Skip to main content
Log in

Upconversion Nanoparticles: Synthesis, Photoluminescence Properties, and Applications

  • REVIEWS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

In the late 1990s, the unique possibilities application of inorganic nanocrystals with anti-Stokes photoluminescence were demonstrated. In a fairly short period, a significant breakthrough has been achieved in this field due to the development of new and modification of existing methods for the synthesis of these nanomaterials, and the expansion of understanding of the photophysical processes occurring in nanocrystals. The interest from the scientific community is due to the exceptional luminescence properties of upconversion nanomaterials, which can convert photons of the near-infrared spectrum to radiation in the visible and UV ranges. This multiquantum process takes place under low-intensity excitation, which largely determines the use of this class of nanomaterials in high-tech fields, including biotechnology, photochemistry, medicine, solar energy, nanosensorics, etc. The goals of this review are to consider the mechanisms of anti-Stokes luminescence, to analyze the synthesis methods, and to demonstrate the applications of fluoride upconversion nanomaterials, in which they have formed a stable scientific and technological niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. N. Bloembergen, Phys. Rev. Lett. 2 (3), 84 (1959). https://doi.org/10.1103/PhysRevLett.2.84

    Article  CAS  Google Scholar 

  2. V. V. Ovsyankin and P. P. Feofilov, JETP Lett. 3, 322 (1966).

    Google Scholar 

  3. F. Auzel, C. R. Acad. Sci. Paris, Ser. B 263, 819 (1966).

    Google Scholar 

  4. A. A. Kaminskii and B. M. Antipenko, Multilevel Functional Crystal Lasers Systems (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  5. S. Heer, K. Kömpe, H.-U. Güdel, and M. Haase, Adv. Mater. 16, 2102 (2004). https://doi.org/10.1002/adma.200400772

    Article  CAS  Google Scholar 

  6. G. Yi, H. Lu, S. Zhao, et al., Nano Lett. 4, 2191 (2004). https://doi.org/10.1021/nl048680h

    Article  CAS  Google Scholar 

  7. F. Wang, R. Deng, J. Wang, et al., Nat. Mater. 10, 968 (2011). https://doi.org/10.1038/nmat3149

    Article  CAS  Google Scholar 

  8. T. Förster, Ann. Phys. 437, 55 (1948). https://doi.org/10.1002/andp.19484370105

    Article  Google Scholar 

  9. D. L. Dexter, J. Chem. Phys. 21, 836 (1953). https://doi.org/10.1063/1.1699044

    Article  CAS  Google Scholar 

  10. A. Nadort, J. Zhao, and E. M. Goldys, Nanoscale 8, 13099 (2016). https://doi.org/10.1039/C5NR08477F

    Article  CAS  Google Scholar 

  11. P. Villanueva-Delgado, K. W. Krämer, and R. Valiente, J. Phys. Chem. C 119, 23648 (2015). https://doi.org/10.1021/acs.jpcc.5b06770

    Article  CAS  Google Scholar 

  12. J. C. Wright, Top. Appl. Phys. 15, 239 (1976). https://doi.org/10.1007/BFb0111143

    Article  CAS  Google Scholar 

  13. F. Auzel, Phys. Rev. B 13, 2809 (1976). https://doi.org/10.1103/PhysRevB.13.2809

    Article  CAS  Google Scholar 

  14. T. Miyakawa and D. L. Dexter, Phys. Rev. B 1, 70 (1970). https://doi.org/10.1103/PhysRevB.1.70

    Article  CAS  Google Scholar 

  15. G. Liu, in Spectroscopic Properties of Rare Earths in Optical Materials, Ed. by R. Hull et al., Springer Ser. Mater. Sci. 83, 1 (2005). https://doi.org/10.1007/3-540-28209-2_1

  16. G. H. Dieke and H. M. Crosswhite, Spectra and Energy Levels of Rare Earth Ions in Crystals (Wiley, New York, 1968).

    Google Scholar 

  17. W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, J. Chem. Phys. 90, 3443 (1989). https://doi.org/10.1063/1.455853

    Article  CAS  Google Scholar 

  18. P. S. Peijzel, A. Meijerink, R. T. Wegh, et al., J. Solid State Chem. 178, 448 (2005). https://doi.org/10.1016/j.jssc.2004.07.046

    Article  CAS  Google Scholar 

  19. N. V. Znamenskii and Yu. V. Malyukin, Spectra and Dynamics of Optical Transitions of Rare-Earth Ions in Crystals (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  20. S. Wen, J. Zhou, K. Zheng, et al., Nat. Commun. 9, 2415 (2018). https://doi.org/10.1038/s41467-018-04813-5

    Article  CAS  Google Scholar 

  21. F. Auzel, Chem. Rev. 104, 139 (2004). https://doi.org/10.1021/cr020357g

    Article  CAS  Google Scholar 

  22. F. Wang and X. Liu, Chem. Soc. Rev. 38, 976 (2009). https://doi.org/10.1039/B809132N

    Article  CAS  Google Scholar 

  23. O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, ACS Nano 2, 120 (2008). https://doi.org/10.1021/nn7002458

    Article  CAS  Google Scholar 

  24. R. Paschotta, J. Nilsson, A. C. Tropper, and D. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997). https://doi.org/10.1109/3.594865

    Article  CAS  Google Scholar 

  25. A. A. Kaminskii, N. R. Agamalyan, G. A. Deniseneo, et al., Phys. Status Solidi A 70, 397 (1982). https://doi.org/10.1002/pssa.2210700206

    Article  CAS  Google Scholar 

  26. A. A. Kaminskii, T. Ngoc, S. E. Sarkisov, et al., Phys. Status Solidi A 59, 121 (1980). https://doi.org/10.1002/pssa.2210590117

    Article  CAS  Google Scholar 

  27. A. A. Kaminskii, S. E. Sarkisov, H. D. Kürsten, and D. Schultze, Phys. Status Solidi A 72, 207 (1982). https://doi.org/10.1002/pssa.2210720121

    Article  CAS  Google Scholar 

  28. M. R. Brown, K. G. Roots, and W. A. Shand, J. Phys. C: Solid State Phys. 2, 593 (1969). https://doi.org/10.1088/0022-3719/2/4/304

    Article  Google Scholar 

  29. H. H. Caspers and H. E. Rast, J. Lumin. 10, 347 (1975). https://doi.org/10.1016/0022-2313(75)90001-0

    Article  CAS  Google Scholar 

  30. L. Esterowitz, F. J. Bartoli, R. E. Allen, et al., Phys. Rev. B 19, 6442 (1979). https://doi.org/10.1103/PhysRevB.19.6442

    Article  CAS  Google Scholar 

  31. A. A. S. da Gama, G. F. de Sá, P. Porcher, and P. Caro, J. Chem. Phys. 75, 2583 (1981). https://doi.org/10.1063/1.442410

    Article  CAS  Google Scholar 

  32. I. V. Krylov, R. A. Akasov, V. V. Rocheva, et al., Front. Chem. 8, 295 (2020). https://doi.org/10.3389/fchem.2020.00295

    Article  CAS  Google Scholar 

  33. H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, J. Phys. Chem. C 111, 13721 (2007). https://doi.org/10.1021/jp073920d

    Article  CAS  Google Scholar 

  34. R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, J. Phys. Chem. Lett. 5, 36 (2013). https://doi.org/10.1021/jz402366r

    Article  CAS  Google Scholar 

  35. S. Alyatkin, I. Asharchuk, K. Khaydukov, et al., Nanotechnology 28, 35401 (2017). https://doi.org/10.1088/1361-6528/28/3/035401

    Article  CAS  Google Scholar 

  36. J. Thirumalai, Luminescence: An Outlook on the Phenomena and Their Applications (InTech, Rijeka, 2016). https://doi.org/10.5772/62517

  37. L. C. Ong, M. K. Gnanasammandhan, S. Nagarajan, and Y. Zhang, Luminescence 25, 290 (2010). https://doi.org/10.1002/bio.1229

    Article  CAS  Google Scholar 

  38. S. V. Kuznetsov, V. V. Osiko, E. A. Tkachenko, and P. P. Fedorov, Russ. Chem. Rev. 75, 1065 (2006).

    Article  CAS  Google Scholar 

  39. A. A. Kaminskii, Laser Photon. Rev. 1, 93 (2007). https://doi.org/10.1002/lpor.200710008

    Article  CAS  Google Scholar 

  40. A. Aebischer, M. Hostettler, J. Hauser, et al., Angew. Chem. Int. Ed. 45, 2802 (2006). https://doi.org/10.1002/anie.200503966

    Article  CAS  Google Scholar 

  41. V. Mahalingam, R. Naccache, F. Vetrone, and J. A. Capobianco, Chem. Eur. J. 15, 96 (2009). https://doi.org/10.1002/chem.200901371

    Article  CAS  Google Scholar 

  42. G. Chen, T. Y. Ohulchanskyy, A. Kachynski, et al., ACS Nano 5, 4981 (2011). https://doi.org/10.1021/nn201083j

    Article  CAS  Google Scholar 

  43. B. F. Zhang, M. Frigoli, F. Angiuli, et al., Chem. Commun. 48, 7244 (2012). https://doi.org/10.1039/C2CC33052K

    Article  CAS  Google Scholar 

  44. J. C. Boyer, L. A. Cuccia, and J. A. Capobianco, Nano Lett. 7, 847 (2007). https://doi.org/10.1021/nl070235

    Article  CAS  Google Scholar 

  45. F. Vetrone, R. Naccache, V. Mahalingam, et al., Adv. Funct. Mater. 19, 2924 (2009). https://doi.org/10.1002/adfm.200900234

    Article  CAS  Google Scholar 

  46. R. Naccache, F. Vetrone, V. Mahalingam, et al., Chem. Mater. 21, 717 (2009). https://doi.org/10.1021/cm803151y

    Article  CAS  Google Scholar 

  47. Q. Liu, Y. Sun, T. Yang, et al., J. Am. Chem. Soc. 133, 17122 (2011). https://doi.org/10.1021/ja207078s

    Article  CAS  Google Scholar 

  48. F. Vetrone, V. Mahalingam, and J. A. Capobianco, Chem. Mater. 21, 1847 (2009). https://doi.org/10.1021/cm900313s

    Article  CAS  Google Scholar 

  49. C. Zhang, C. Li, G. Li, et al., J. Mater. Chem. 21, 717 (2011). https://doi.org/10.1039/C0JM02948C

    Article  CAS  Google Scholar 

  50. V. Mahalingam, F. Vetrone, J. A. Capobianco, et al., J. Mater. Chem. 19, 3149 (2009). https://doi.org/10.1039/B900300B

    Article  CAS  Google Scholar 

  51. D. Yang, C. Li, G. Li, et al., J. Mater. Chem. 21, 5923 (2011). https://doi.org/10.1039/C0JM04179C

    Article  CAS  Google Scholar 

  52. G. Yi, Y. Peng, and Z. Gao, Chem. Mater. 23, 2729 (2011). https://doi.org/10.1021/cm103175s

    Article  CAS  Google Scholar 

  53. X. Sun, Y. W. Zhang, Y. P. Du, et al., Chem. Eur. J. 13, 2320 (2007). https://doi.org/10.1002/chem.200601072

    Article  CAS  Google Scholar 

  54. Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, J. Phys. Chem. C 112, 405 (2008). https://doi.org/10.1021/jp076717r

    Article  CAS  Google Scholar 

  55. Z. Quan, D. Yang, P. Yang, et al., Inorg. Chem. 47, 9509 (2008). https://doi.org/10.1021/ic8014207

    Article  CAS  Google Scholar 

  56. Y. P. Du, X. Sun, Y. W. Zhang, et al., Cryst. Growth Des. 9, 2013 (2009). https://doi.org/10.1021/cg801371r

    Article  CAS  Google Scholar 

  57. G. S. Yi and G. M. Chow, Chem. Mater. 19, 341 (2007). https://doi.org/10.1021/cm062447y

    Article  CAS  Google Scholar 

  58. J. Shan and Y. Ju, Nanotechnology 20, 27560 (2009). https://doi.org/10.1088/0957-4484/20/27/275603

    Article  CAS  Google Scholar 

  59. J. Shan, X. Qin, N. Yao, and Y. Ju, Nanotechnology 18, 445607 (2007). https://doi.org/10.1088/0957-4484/18/44/445607

    Article  CAS  Google Scholar 

  60. C. Yan, H. Zhao, D. F. Perepichka, and F. Rosei, Small 12, 3888 (2016). https://doi.org/10.1002/smll.201601565

    Article  CAS  Google Scholar 

  61. S. Lu, D. Tu, X. Li, et al., Nano Res. 9, 187 (2016). https://doi.org/10.1007/s12274-015-0979-4

    Article  CAS  Google Scholar 

  62. T. Cheng, R. Marin, A. Skripka, et al., J. Am. Chem. Soc. 140, 12890 (2018). https://doi.org/10.1021/jacs.8b07086

    Article  CAS  Google Scholar 

  63. G. Chen, H. Qiu, R. Fan, et al., J. Mater. Chem. 22, 20190 (2012). https://doi.org/10.1039/C2JM32298F

    Article  CAS  Google Scholar 

  64. G. S. Yi, W. B. Lee, and G. M. Chow, J. Nanosci. Nanotechnol. 7, 2790 (2007). https://doi.org/10.1166/jnn.2007.638

    Article  CAS  Google Scholar 

  65. D. Zhang, G. De, L. Zi, et al., J. Colloid Interface Sci. 512, 141 (2018). https://doi.org/10.1016/j.jcis.2017.10.012

    Article  CAS  Google Scholar 

  66. B. Zhou, B. Xu, H. He, et al., Nanoscale 10, 2834 (2018). https://doi.org/10.1039/C7NR07709B

    Article  CAS  Google Scholar 

  67. J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, J. Am. Chem. Soc. 128, 7444 (2006). https://doi.org/10.1021/ja061848b

    Article  CAS  Google Scholar 

  68. B. Shao, Q. Zhao, Y. Jia, et al., Chem. Commun. 50, 12706 (2014). https://doi.org/10.1039/C4CC05191B

    Article  CAS  Google Scholar 

  69. P. Du, L. Luo, X. Huang, and J. S. Yu, J. Colloid Interface Sci. 514, 172 (2018). https://doi.org/10.1016/j.jcis.2017.12.027

    Article  CAS  Google Scholar 

  70. A. Kumar, S. P. Tiwari, H. C. Swart, and J. C. G. E. da Silva, Opt. Mater. 92, 347 (2019). https://doi.org/10.1016/j.optmat.2019.04.050

    Article  CAS  Google Scholar 

  71. G. S. Yi and G. M. Chow, J. Mater. Chem. 15, 4460 (2005). https://doi.org/10.1039/B508240D

    Article  CAS  Google Scholar 

  72. H. Na, K. Woo, K. Lim, and H. S. Jang, Nanoscale 5, 4242 (2013). https://doi.org/10.1039/C3NR00080J

    Article  CAS  Google Scholar 

  73. F. Wang, Y. Han, C. Lim, et al., Nature (London, U.K.) 463 (7284), 1061 (2010). https://doi.org/10.1038/nature08777

    Article  CAS  Google Scholar 

  74. J. A. Damasco, G. Chen, W. Shao, et al., ACS Appl. Mater. Interfaces 6, 13884 (2014). https://doi.org/10.1021/am503288d

    Article  CAS  Google Scholar 

  75. H. T. Wong, F. Vetrone, R. Naccache, et al., J. Mater. Chem. 21, 16589 (2011). https://doi.org/10.1039/C1JM12796A

    Article  CAS  Google Scholar 

  76. J. A. Capobianco, X. Teng, Y. Zhu, et al., J. Am. Chem. Soc. 134, 8340 (2012). https://doi.org/10.1021/ja3016236

    Article  CAS  Google Scholar 

  77. D. Liu, X. Xu, Y. Du, et al., Nat. Commun. 7, 10254 (2016). https://doi.org/10.1038/ncomms10254

    Article  CAS  Google Scholar 

  78. B. Chen, W. Kong, N. Wang, et al., Chem. Mater. 31, 4779 (2019). https://doi.org/10.1021/acs.chemmater.9b01050

    Article  CAS  Google Scholar 

  79. S. Feng and R. Xu, Acc. Chem. Res. 34, 239 (2001). https://doi.org/10.1021/ar0000105

    Article  CAS  Google Scholar 

  80. C. Li and J. Lin, J. Mater. Chem. 20, 6831 (2010). https://doi.org/10.1039/C0JM00031K

    Article  CAS  Google Scholar 

  81. V. Muhr, S. Wilhelm, T. Hirsch, and O. S. Wolfbeis, Acc. Chem. Res. 47, 3481 (2014). https://doi.org/10.1021/ar500253g

    Article  CAS  Google Scholar 

  82. X. Wang, J. Zhuang, Q. Peng, et al., Nature (London, U.K.) 437 (7055), 121 (2005). https://doi.org/10.1038/nature03968

    Article  CAS  Google Scholar 

  83. L. Wang and Y. Li, Chem. Mater. 19, 727 (2007). https://doi.org/10.1021/cm061887m

    Article  CAS  Google Scholar 

  84. F. Zhang, Y. Wan, T. Yu, et al., Angew. Chem. Int. Ed. 46, 7976 (2007). https://doi.org/10.1002/anie.200702519

    Article  CAS  Google Scholar 

  85. W. Qi, Q. Wu, J. G. Shapter, et al., ACS Omega 3, 18730 (2018). https://doi.org/10.1021/acsomega.8b02919

    Article  CAS  Google Scholar 

  86. H. Hu, Z. Chen, T. Cao, et al., Nanotechnology 19, 375702 (2008). https://doi.org/10.1088/0957-4484/19/37/375702

    Article  CAS  Google Scholar 

  87. M. Gunaseelan, S. Yamini, G. A. Kumar, and J. Senthilselvan, Opt. Mater. 75, 174 (2018). https://doi.org/10.1016/j.optmat.2017.10.012

    Article  CAS  Google Scholar 

  88. B. E. Lucier, K. E. Johnston, D. C. Arnold, et al., J. Phys. Chem. C 118, 1213 (2014). https://doi.org/10.1021/jp408148b

    Article  CAS  Google Scholar 

  89. B. Richard, J. L. Lemyre, and A. M. Ritcey, Langmuir 33, 4748 (2017). https://doi.org/10.1021/acs.langmuir.7b00773

    Article  CAS  Google Scholar 

  90. H. Cai, T. Shen, A. M. Kirillov, et al., Inorg. Chem. 56, 5295 (2017). https://doi.org/10.1021/acs.inorgchem.7b00380

    Article  CAS  Google Scholar 

  91. W. Wu, L. Wang, Y. Wang, et al., J. Colloid Interface Sci. 563, 308 (2020). https://doi.org/10.1016/j.jcis.2019.12.084

    Article  CAS  Google Scholar 

  92. L. Liu, J. Jiao, W. Wei, et al., Scr. Mater. 169, 61 (2019). https://doi.org/10.1016/j.scriptamat.2019.04.038

    Article  CAS  Google Scholar 

  93. H. Xu, L. Cheng, C. Wang, et al., Biomaterials 32, 9364 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.053

    Article  CAS  Google Scholar 

  94. A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, J. Phys. Chem. B 106, 1909 (2002). https://doi.org/10.1021/jp013576z

    Article  CAS  Google Scholar 

  95. S. Lepoutre, D. Boyer, and R. Mahiou, Opt. Mater. 28, 592 (2006). https://doi.org/10.1016/j.optmat.2005.09.053

    Article  CAS  Google Scholar 

  96. B. S. Cao, Y. Y. He, L. Zhang, and B. Dong, J. Lumin. 135, 128 (2013). https://doi.org/10.1016/j.jlumin.2012.10.031

    Article  CAS  Google Scholar 

  97. X. Chen, Z. Liu, Q. Sun, et al., Opt. Commun. 284, 2046 (2011). https://doi.org/10.1016/j.optcom.2010.12.007

    Article  CAS  Google Scholar 

  98. A. Meneses-Franco, M. Campos-Vallette, S. O. Vás-quez, and E. A. Soto-Bustamante, Materials 11, 1950 (2018). https://doi.org/10.3390/ma11101950

    Article  CAS  Google Scholar 

  99. J. Lin, M. Yu, C. Lin, and X. Liu, J. Phys. Chem. C 111, 5835 (2007). https://doi.org/10.1021/jp070062c

    Article  CAS  Google Scholar 

  100. Q. Lü, A. Li, F. Guo, et al., Nanotechnology 19, 145701 (2008). https://doi.org/10.1088/0957-4484/19/14/145701

    Article  CAS  Google Scholar 

  101. Z. S. Chen, W. P. Gong, T. F. Chen, and S. L. Li, Bull. Mater. Sci. 34, 429 (2011). https://doi.org/10.1007/s12034-011-0116-2

    Article  CAS  Google Scholar 

  102. M. A. Hernéz-Rodriguez, A. D. Lozano-Gorrín, V. Lavín, et al., Opt. Express 25, 27845 (2017). https://doi.org/10.1364/OE.25.027845

    Article  Google Scholar 

  103. T. Grzyb, M. Węcławiak, J. Rozowska, and S. Lis, J. Alloys Compd. 576, 345 (2013). https://doi.org/10.1016/j.jallcom.2013.05.207

    Article  CAS  Google Scholar 

  104. T. Grzyb and A. Tymiński, J. Alloys Compd. 660, 235 (2016). https://doi.org/10.1016/j.jallcom.2015.11.122

    Article  CAS  Google Scholar 

  105. S. Fujihara, Y. Kishiki, and T. Kimura, J. Alloys Compd. 333, 76 (2002). https://doi.org/10.1016/S0925-8388(01)01696-6

    Article  CAS  Google Scholar 

  106. H. Chang, J. Xie, B. Zhao, et al., Nanomaterials 5, 1 (2015). https://doi.org/10.3390/nano5010001

    Article  CAS  Google Scholar 

  107. C. O. Kappe, Angew. Chem. Int. Ed. 43, 6250 (2004). https://doi.org/10.1002/anie.200400655

    Article  CAS  Google Scholar 

  108. D. Stuerga and M. Delmotte, Microwaves in Organic Synthesis (Wiley-VCH, Weinheim, 2006).

    Google Scholar 

  109. L. Tong, X. Li, R. Hua, et al., J. Nanosci. Nanotechnol. 16, 816 (2016). https://doi.org/10.1166/jnn.2016.10889

    Article  CAS  Google Scholar 

  110. K. L. Reddy, N. Prabhakar, R. Arppe, et al., J. Mater. Sci. 52, 5738 (2017). https://doi.org/10.1007/s10853-017-0809-z

    Article  CAS  Google Scholar 

  111. C. Mi, Z. Tian, C. Cao, et al., Langmuir 27, 14632 (2011). https://doi.org/10.1021/la204015m

    Article  CAS  Google Scholar 

  112. F. Li, C. Li, X. Liu, et al., Dalton Trans. 42, 2015 (2013). https://doi.org/10.1039/C2DT32295A

    Article  CAS  Google Scholar 

  113. Y. Suzuki, S. Yin, and T. Sato, Mater. Focus 4, 58 (2015). https://doi.org/10.1166/mat.2015.1208

    Article  CAS  Google Scholar 

  114. D. Wang, L. Ren, X. Zhou, et al., Nanotechnology 23, 225705 (2012). https://doi.org/10.1088/0957-4484/23/22/225705

    Article  CAS  Google Scholar 

  115. H. Q. Wang and T. Nann, ACS Nano 3, 3804 (2009). https://doi.org/10.1021/nn9012093

    Article  CAS  Google Scholar 

  116. H. Q. Wang, R. D. Tilley, and T. Nann, Cryst. Eng. Commun. 12, 1993 (2010). https://doi.org/10.1039/B927225A

    Article  CAS  Google Scholar 

  117. P. P. Fedorov and A. A. Alexandrov, J. Fluorine Chem., 109374 (2019). https://doi.org/10.1016/j.jfluchem.2019.109374

  118. K. Teshima, S. Lee, N. Shikine, et al., Cryst. Growth Des. 11, 995 (2011). https://doi.org/10.1021/cg100932k

    Article  CAS  Google Scholar 

  119. P. P. Fedorov, M. N. Mayakova, S. V. Kuznetsov, V. A. Maslov, N. I. Sorokin, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, M. A. Uslamina, and K. N. Nishchev, Russ. J. Inorg. Chem. 61, 1472 (2016).

    Article  CAS  Google Scholar 

  120. M. Ding, W. Huang, L. Cao, et al., Mater. Lett. 86, 58 (2012). https://doi.org/10.1016/j.matlet.2012.07.031

    Article  CAS  Google Scholar 

  121. M. Ding, D. Chen, J. Zhong, et al., Sci. Adv. Mater. 9, 688 (2017). https://doi.org/10.1166/sam.2017.2680

    Article  CAS  Google Scholar 

  122. X. Zhang, P. Yang, C. Li, et al., Chem. Commun. 47, 12143 (2011). https://doi.org/10.1039/C1CC15194K

    Article  CAS  Google Scholar 

  123. M. Ding, C. Lu, L. Cao, et al., Cryst. Eng. Commun. 15, 6015 (2013). https://doi.org/10.1039/C3CE40477C

    Article  CAS  Google Scholar 

  124. X. Huang, G. Hu, Q. Xu, et al., J. Alloys Compd. 616, 652 (2014). https://doi.org/10.1016/j.jallcom.2014.07.067

    Article  CAS  Google Scholar 

  125. V. Yu. Proydakova, A. A. Alexandrov, V. V. Voronov, and P. P. Fedorov, Russ. J. Inorg. Chem. 65, 834 (2020). https://doi.org/10.31857/S0044457X20060161

    Article  CAS  Google Scholar 

  126. T. Welton and P. Wasserscheid, Ionic Liquids in Synthesis (Wiley-VCH, Weinheim, 2008).

    Google Scholar 

  127. C. Zhang and J. Chen, Chem. Commun. 46, 592 (2010). https://doi.org/10.1039/B919044A

    Article  CAS  Google Scholar 

  128. N. Zhou, P. Qiu, K. Wang, et al., Nanoscale Res. Lett. 8, 1 (2013). https://doi.org/10.1186/1556-276X-8-518

    Article  CAS  Google Scholar 

  129. Y. Song, Y. Li, T. Zhao, et al., J. Colloid Interface Sci. 487, 281 (2017). https://doi.org/10.1016/j.jcis.2016.10.044

    Article  CAS  Google Scholar 

  130. M. Guricová, J. Pinc, J. Malinčik, et al., Rev. Inorg. Chem. 39, 77 (2019). https://doi.org/10.1515/revic-2018-0016

    Article  CAS  Google Scholar 

  131. C. Li, P. Yang, Z. Xu, et al., Cryst. Eng. Commun. 13, 1003 (2011). https://doi.org/10.1039/C0CE00186D

    Article  CAS  Google Scholar 

  132. X. Liu, J. Zhao, Y. Sun, et al., Chem. Commun., No. 43, 6628 (2009). https://doi.og/10.1039/B915517A

  133. M. He, P. Huang, C. Zhang, et al., Adv. Funct. Mater. 21, 4470 (2011). https://doi.org/10.1002/adfm.201101040

    Article  CAS  Google Scholar 

  134. D. González-Mancebo, A. I. Becerro, E. Cantelar, et al., Dalton Trans. 46, 6580 (2017). https://doi.org/10.1039/C7DT00453B

    Article  Google Scholar 

  135. G. W. Yang, Prog. Mater. Sci. 52, 648 (2007). https://doi.org/10.1016/j.pmatsci.2006.10.016

    Article  CAS  Google Scholar 

  136. A. Barchanski, D. Funk, O. Wittich, et al., J. Phys. Chem. C 119, 9524 (2015). https://doi.org/10.1021/jp511162n

    Article  CAS  Google Scholar 

  137. F. Mafuné, J. Kohno, Y. Takeda, et al., J. Phys. Chem. B 104, 8333 (2000). https://doi.org/10.1021/jp001803b

    Article  CAS  Google Scholar 

  138. D. Katsuki, T. Sato, R. Suzuki, et al., Appl. Phys. A 108, 321 (2012). https://doi.org/10.1007/s00339-012-6962-y

    Article  CAS  Google Scholar 

  139. T. Sasaki, C. Liang, W. T. Nichols, et al., Appl. Phys. A 79, 1489 (2004). https://doi.org/10.1007/s00339-004-2827-3

    Article  CAS  Google Scholar 

  140. L. Sajti, D. N. Karimov, V. V. Rocheva, et al., Nano Res. (2020). https://doi.org/10.1007/s12274-020-3163-4

  141. A. M. Edmonds, M. A. Sobhan, V. K. Sreenivasan, et al., Part. Part. Syst. Char. 30, 506 (2013). https://doi.org/10.1002/ppsc.201200112

    Article  CAS  Google Scholar 

  142. E. Maurer, S. Barcikowski, and B. Gökce, Chem. Eng. Technol. 40, 1535 (2017). https://doi.org/10.1002/ceat.201600506

    Article  CAS  Google Scholar 

  143. Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, J. Lumin. 137, 220 (2013). https://doi.org/10.1016/j.jlumin.2012.12.033

    Article  CAS  Google Scholar 

  144. T. Ikehata, Y. Onodera, T. Nunokawa, et al., Appl. Surf. Sci. 348, 54 (2015). https://doi.org/10.1016/j.apsusc.2014.12.097

    Article  CAS  Google Scholar 

  145. L. Gemini, T. Schmitz, R. Kling, et al., Chem. Phys. Chem. 18, 1210 (2017). https://doi.org/10.1002/cphc.201601266

    Article  CAS  Google Scholar 

  146. R. Anjana, K. M. Kurias, and M. K. Jayaraj, Opt. Mater. 72, 730 (2017). https://doi.org/10.1016/j.optmat.2017.07.021

    Article  CAS  Google Scholar 

  147. E. G. Avvakumov, M. Senna, and N. V. Kosova, Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies (Kluwer Academic, London, 2002).

    Google Scholar 

  148. H. Guérault and J. M. Greneche, J. Phys.: Condens. Matter. 12, 4791 (2000). https://doi.org/10.1088/0953-8984/12/22/311

    Article  Google Scholar 

  149. J. Chable, A. G. Martin, A. Bourdin, et al., J. Alloys Compd. 692, 980 (2017). https://doi.org/10.1016/j.jallcom.2016.09.135

    Article  CAS  Google Scholar 

  150. D. N. Patel, S. S. Sarkisov, A. M. Darwish, and J. Ballato, Opt. Express 24, 21147 (2016). https://doi.org/10.1364/OE.24.021147

    Article  CAS  Google Scholar 

  151. D. Yuan, G. S. Yi, and G. M. Chow, J. Mater. Res. 24, 2042 (2009). https://doi.org/10.1557/jmr.2009.0258

    Article  Google Scholar 

  152. A. Toncelli and B. Ahmadi, in Proceedings of the 2011 International Workshop on Biophotonics (IEEE, 2011), p. 1. https://doi.org/10.1109/IWBP.2011.5954826

  153. R. Hakim, K. Damak, M. Gemmi, et al., J. Phys. Chem. C 119, 2844 (2015). https://doi.org/10.1021/jp510851w

    Article  CAS  Google Scholar 

  154. A. Duvel, J. Bednarcik, V. Sepelak, and P. Heitjans, J. Phys. Chem. C 118, 7117 (2014). https://doi.org/10.1021/jp410018t

    Article  CAS  Google Scholar 

  155. M. Heise, G. Schol, T. Krahl, and E. Kemnitz, Solid State Sci. 91, 113 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.03.014

    Article  CAS  Google Scholar 

  156. B. P. Sobolev, V. I. Fadeeva, I. A. Sviridov, S. N. Sul’-yanov, N. I. Sorokin, Z. I. Zhmurova, P. Herrero, A. Landa Canovas, and R. M. Rojas, Crystallogr. Rep. 50, 478 (2005).

    Article  CAS  Google Scholar 

  157. B. P. Sobolev, I. A. Sviridov, V. I. Fadeeva, S. N. Sul’-yanov, N. I. Sorokin, Z. I. Zhmurova, I. I. Khodos, A. S. Avilov, and M. A. Zaporozhets, Crystallogr. Rep. 53, 868 (2008).

    Article  CAS  Google Scholar 

  158. Z. Liu, M. A. Stevens-Kalceff, X. Wang, and H. Riesen, Chem. Phys. Lett. 588, 193 (2013). https://doi.org/10.1016/j.cplett.2013.10.024

    Article  CAS  Google Scholar 

  159. X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, Inorg. Chem. 53, 8839 (2014). https://doi.org/10.1021/ic500712b

    Article  CAS  Google Scholar 

  160. J. Zhang, N. Riesen, and H. Riesen, Nanoscale 9, 15958 (2017). https://doi.org/10.1039/C7NR05108E

    Article  CAS  Google Scholar 

  161. J. Zhang and H. Riesen, Chem. Phys. Lett. 641, 1 (2015). https://doi.org/10.1016/j.cplett.2015.10.040

    Article  CAS  Google Scholar 

  162. G. Chen, H. Agren, T. Y. Ohulchanskyy, and P. N. Prasad, Chem. Soc. Rev. 44, 1680 (2015). https://doi.org/10.1039/C4CS00170B

    Article  CAS  Google Scholar 

  163. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, Chem. Rev. 114, 5161 (2014). https://doi.org/10.1021/cr400425h

    Article  CAS  Google Scholar 

  164. V. V. Rocheva, A. V. Koroleva, A. G. Savelyev, et al., Sci. Rep. 8, 3663 (2018). https://doi.org/10.1038/s41598-018-21793-0

    Article  CAS  Google Scholar 

  165. X. Wang, R. R. Valiev, T. Y. Ohulchanskyy, et al., Chem. Soc. Rev. 46, 4150 (2017). https://doi.org/10.1039/C7CS00053G

    Article  CAS  Google Scholar 

  166. Q. Shao, X. Li, P. Hua, et al., J. Colloid Interface Sci. 486, 121 (2017). https://doi.org/10.1016/j.jcis.2016.09.067

    Article  CAS  Google Scholar 

  167. K. Okamoto, I. Niki, A. Shvartser, et al., Nat. Mater. 3, 601 (2004). https://doi.org/10.1038/nmat1198

    Article  CAS  Google Scholar 

  168. P. Berini and I. de Leon, Nat. Photon. 6, 16 (2012). https://doi.org/10.1038/nphoton.2011.285

    Article  CAS  Google Scholar 

  169. C. David, N. Guillot, H. Shen, et al., Nanotechnology 21, 475501 (2010). https://doi.org/10.1088/0957-4484/21/47/475501

    Article  CAS  Google Scholar 

  170. M. Liu, R. Chen, G. Adamo, et al., Nanophotonics 2, 153 (2013). https://doi.org/10.1515/nanoph-2012-0040

    Article  CAS  Google Scholar 

  171. M. A. Noginov, G. Zhu, A. M. Belgrave, et al., Nat. Lett. 460 (7259), 1110 (2009). https://doi.org/10.1038/nature08318

    Article  CAS  Google Scholar 

  172. D. Lu, C. Mao, S. K. Cho, et al., Sci. Rep. 6, 18894 (2016). https://doi.org/10.1038/srep18894

    Article  CAS  Google Scholar 

  173. A. L. Feng, M. L. You, L. Tian, et al., Sci. Rep. 5, 7779 (2015). https://doi.org/10.1038/srep07779

    Article  CAS  Google Scholar 

  174. Z. Dai, Advances in Nanotheranostics II. Cancer Theranostic Nanomedicine (Springer, Singapore, 2016), Vol. 7. https://doi.org/10.1007/978-981-10-0063-8

  175. M. Chen and M. Yin, Prog. Polym. Sci. 39, 365 (2014). https://doi.org/10.1016/j.progpolymsci.2013.11.001

    Article  CAS  Google Scholar 

  176. D. Yang, P. Ma, Z. Hou, et al., Chem. Soc. Rev. 44, 1416 (2015). https://doi.org/10.1039/c4cs00155a

    Article  CAS  Google Scholar 

  177. J. Zhou, Q. Liu, W. Feng, et al., Chem. Rev. 115, 395 (2015). https://doi.org/10.1021/cr400478f

    Article  CAS  Google Scholar 

  178. J. Key and J. F. Leary, Int. J. Nanomed. 9, 711 (2014). https://doi.org/10.2147/IJN.S53717

    Article  Google Scholar 

  179. A. N. Generalova, B. N. Chichkov, and E. V. Khaydukov, Adv. Colloid Interface Sci. 245, 1 (2017). https://doi.org/10.1016/j.cis.2017.05.006

    Article  CAS  Google Scholar 

  180. D. E. Dolmans, D. Fukumura, and R. K. Jain, Nat. Rev. Cancer 3, 380 (2003). https://doi.org/10.1038/nrc1071

    Article  CAS  Google Scholar 

  181. C. Wang, H. Tao, L. Cheng, and Z. Liu, Biomaterials 32, 6145 (2011). https://doi.org/10.1016/j.biomaterials.2011.05.007

    Article  CAS  Google Scholar 

  182. M. Wang, Z. Chen, W. Zheng, et al., Nanoscale 6, 8274 (2014). https://doi.org/10.1039/C4NR01826E

    Article  CAS  Google Scholar 

  183. F. Ai, Q. Ju, X. Zhang, et al., Sci. Rep. 5, 10785 (2015). https://doi.org/10.1038/srep10785

    Article  CAS  Google Scholar 

  184. E. V. Khaydukov, K. E. Mironova, V. A. Semchishen, et al., Sci. Rep. 6, 35103 (2016). https://doi.org/10.1038/srep35103

    Article  CAS  Google Scholar 

  185. K. E. Mironova, D. A. Khochenkov, and A. N. Ge-neralova, Nanoscale 9, 14921 (2017). https://doi.org/10.1039/C7NR04092J

    Article  CAS  Google Scholar 

  186. E. A. Grebenik, A. B. Kostyuk, and S. M. Deyev, Russ. Chem. Rev. 85, 1277 (2016).

    Article  CAS  Google Scholar 

  187. X. Wang, X. Kong, Y. Yu, et al., J. Phys. Chem. C 111, 15119 (2007). https://doi.org/10.1021/jp0686689

    Article  CAS  Google Scholar 

  188. Y. Lei, H. Song, L. Yang, et al., J. Chem. Phys. 123, 174710 (2005). https://doi.org/10.1063/1.2087487

    Article  CAS  Google Scholar 

  189. Y. Wang, L. Tu, J. Zhao, et al., J. Phys. Chem. C 113, 7164 (2009). https://doi.org/10.1021/jp9003399

    Article  CAS  Google Scholar 

  190. X. Bai, H. Song, G. Pan, et al., J. Phys. Chem C 111, 13611 (2007). https://doi.org/10.1021/jp070122e

    Article  CAS  Google Scholar 

  191. F. Vetrone, R. Naccache, A. Zamarrón, et al., ACS Nano 4, 3254 (2010). https://doi.org/10.1021/nn100244a

    Article  CAS  Google Scholar 

  192. A. Sedlmeier, D. E. Achatz, L. H. Fischer, et al., Nanoscale 4, 7090 (2012). https://doi.org/10.1039/C2NR32314A

    Article  CAS  Google Scholar 

  193. D. Li, Y. Wang, X. Zhang, et al., Opt. Commun. 285, 1925 (2012). https://doi.org/10.1016/j.optcom.2011.12.075

    Article  CAS  Google Scholar 

  194. F. van de Rijke, H. Zijlmans, S. Li, et al., Nat. Biotechnol. 19, 273 (2001). https://doi.org/10.1038/85734

    Article  CAS  Google Scholar 

  195. M. Wang, W. Hou, C. C. Mi, et al., Anal. Chem. 81, 8783 (2009). https://doi.org/10.1021/ac901808q

    Article  CAS  Google Scholar 

  196. Q. Liu, J. Peng, L. Sun, and F. Li, ACS Nano 5, 8040 (2011). https://doi.org/10.1021/nn202620u

    Article  CAS  Google Scholar 

  197. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034

    Article  CAS  Google Scholar 

  198. T. Trupke, A. Shalav, B. S. Richards, et al., Sol. Energy Mater. Sol. Cells 90, 3327 (2006). https://doi.org/10.1016/j.solmat.2005.09.021

    Article  CAS  Google Scholar 

  199. G. B. Shan, H. Assaaoudi, and G. P. Demopoulos, ACS Appl. Mater. Interfaces 3, 3239 (2011). https://doi.org/10.1021/am200537e

    Article  CAS  Google Scholar 

  200. G. B. Shan and G. P. Demopoulos, Adv. Mater. 22, 4373 (2010). https://doi.org/10.1002/adma.201001816

    Article  CAS  Google Scholar 

  201. J. Yu, Y. Yang, R. Fan, et al., Nanoscale 8, 4173 (2016). https://doi.org/10.1039/C5NR08319B

    Article  CAS  Google Scholar 

  202. L. Liang, Y. Liu, and X. Z. Zhao, Chem. Commun. 49, 3958 (2013). https://doi.org/10.1039/C3CC41252K

    Article  CAS  Google Scholar 

  203. L. Liang, Y. Liu, C. Bu, et al., Adv. Mater. 25, 2174 (2013). https://doi.org/10.1002/adma.201204847

    Article  CAS  Google Scholar 

  204. S. Hao, Y. Shang, D. Li, et al., Nanoscale 9, 6711 (2017). https://doi.org/10.1039/C7NR01008G

    Article  CAS  Google Scholar 

  205. S. Beyazit, S. Ambrosini, N. Marchyk, et al., Angew. Chem. Int. Ed. 53, 8919 (2014). https://doi.org/10.1002/anie.201403576

    Article  CAS  Google Scholar 

  206. Q. Xiao, Y. Ji, Z. Xiao, et al., Chem. Commun. 49, 1527 (2013). https://doi.org/10.1039/C2CC37620B

    Article  CAS  Google Scholar 

  207. J. Méndez-Ramos, J. C. Ruiz-Morales, P. Acosta-Mora, and N. M. Khaidukov, J. Mater. Chem. C 4, 801 (2016). https://doi.org/10.1039/C5TC03315B

    Article  CAS  Google Scholar 

  208. M. K. Darani, S. Bastani, M. Ghahari, et al., Prog. Org. Coat. 104, 97 (2017). https://doi.org/10.1016/j.porgcoat.2016.11.005

    Article  CAS  Google Scholar 

  209. R. Liu, H. Chen, Z. Li, et al., Polym. Chem. 7, 2457 (2016). https://doi.org/110.1039/C6PY00184J

    Article  CAS  Google Scholar 

  210. P. A. Demina, N. A. Arkharova, I. M. Asharchuk, et al., Molecules 24, 2476 (2019). https://doi.org/10.3390/molecules24132476

    Article  CAS  Google Scholar 

  211. Y. Pan, P. Feng, M. Yin, et al., Chem. Select. 4, 11346 (2019). https://doi.org/10.1002/slct.201902646

    Article  CAS  Google Scholar 

  212. Y. Wang, H. Suzuki, J. Xie, et al., Chem. Rev. 118, 5201 (2018). https://doi.org/10.1021/acs.chemrev.7b00286

    Article  CAS  Google Scholar 

  213. R. Balaji, S. Kumar, K. L. Reddy, et al., J. Alloys Compd. 724, 481 (2017). https://doi.org/10.1016/j.jallcom.2017.07.050

    Article  CAS  Google Scholar 

  214. M. Fagnoni, D. Dondi, D. Ravelli, and A. Albini, Chem. Rev. 107, 2725 (2007). https://doi.org/10.1021/cr068352x

    Article  CAS  Google Scholar 

  215. H. Huang, H. Li, Z. Wang, et al., Chem. Eng. J. 361, 1089 (2019). https://doi.org/10.1016/j.cej.2018.12.174

    Article  CAS  Google Scholar 

  216. S. Challagulla, S. Payra, M. Bajaj, and S. Roy, Bull. Mater. Sci. 42, 102 (2019). https://doi.org/10.1007/s12034-019-1804-6

    Article  CAS  Google Scholar 

  217. L. Yang, J. Huang, W. Ji, and M. Mao, Powder Technol. 360, 956 (2020). https://doi.org/10.1016/j.powtec.2019.10.053

    Article  CAS  Google Scholar 

  218. A. Fujishima, X. Zhang, and D. A. Tryk, Surf. Sci. Rep. 63, 515 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001

    Article  CAS  Google Scholar 

  219. A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev. 95, 735 (1995). https://doi.org/10.1021/cr00035a013

    Article  CAS  Google Scholar 

  220. X. Xu, Y. Sun, Q. Zhang, et al., Opt. Mater. 94, 444 (2019). https://doi.org/10.1016/j.optmat.2019.05.038

    Article  CAS  Google Scholar 

  221. J. Wang, F. Wen, Z. Zhang, et al., J. Environ. Sci. Chin. 17, 727 (2005).

    CAS  Google Scholar 

  222. W. Qin, D. Zhang, D. Zhao, et al., Chem. Commun. 46, 2304 (2010). https://doi.org/10.1039/b924052g

    Article  CAS  Google Scholar 

  223. Y. Zhou, S. Wu, F. Wang, et al., Chemosphere 238, 124648 (2020). https://doi.org/10.1016/j.chemosphere.2019.124648

    Article  CAS  Google Scholar 

  224. R. Boppella, F. Marques Mota, J. W. Lim, et al., ACS Appl. Energy Mater. 2, 3780 (2019). https://doi.org/10.1021/acsaem.9b00469

    Article  CAS  Google Scholar 

  225. C. K. Chen, H. M. Chen, C.-J. Chen, and R.-S. Liu, Chem. Commun. 49, 7917 (2013). https://doi.org/10.1039/C3CC42567C

    Article  CAS  Google Scholar 

  226. B. Yoon, J. Lee, I. S. Park, et al., J. Mater. Chem. C 1, 2388 (2013). https://doi.org/10.1039/C3TC00818E

    Article  CAS  Google Scholar 

  227. B. K. Gupta, D. Haranath, S. Saini, et al., Nanotechnology 21, 055607 (2010). https://doi.org/10.1088/0957-4484/21/5/055607

    Article  CAS  Google Scholar 

  228. T. K. Anh, D. X. Loc, T. T. Huong, et al., Int. J. Nanotechnol. 8, 335 (2011). https://doi.org/10.1504/IJNT.2011.03821

    Article  Google Scholar 

  229. J. M. Meruga, A. Baride, W. Cross, et al., J. Mater. Chem. C 2, 2221 (2014). https://doi.org/10.1039/C3TC32233E

    Article  CAS  Google Scholar 

  230. M. You, J. Zhong, Y. Hong, et al., Nanoscale 7, 4423 (2015). https://doi.org/10.1039/C4NR06944G

    Article  CAS  Google Scholar 

  231. E. V. Khaydukov, V. A. Semchishen, and A. V. Zvya-gin, Opt. Lett. 40, 1169 (2015). https://doi.org/10.1364/OL.40.001169

    Article  CAS  Google Scholar 

  232. J. Zhao, D. Jin, E. P. Schartner, et al., Nat. Nanotechnol. 8, 729 (2013). https://doi.org/10.1038/nnano.2013.171

    Article  CAS  Google Scholar 

  233. Y. Lu, J. Zhao, R. Zhang, et al., Nat. Photon. 8, 32 (2014). https://doi.org/10.1038/nphoton.2013.322

    Article  CAS  Google Scholar 

  234. E. V. Khaidukov, V. V. Rocheva, K. E. Mironova, A. N. Generalova, A. V. Nechaev, V. A. Semchishen, and V. Ya. Panchenko, Nanotechnol. Russ. 10, 904 (2015).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-02-00877 in terms of analysis of methods for the synthesis of nanoparticles, project no. 18-29-20064 in terms of analysis of synthesis methods and properties of hybrid nanostructures) and the RF Ministry of Science and Higher Education in the framework of the state assignment of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences in terms of the analysis of the photophysics of the upconversion process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Khaydukov.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimov, D.N., Demina, P.A., Koshelev, A.V. et al. Upconversion Nanoparticles: Synthesis, Photoluminescence Properties, and Applications. Nanotechnol Russia 15, 655–678 (2020). https://doi.org/10.1134/S1995078020060117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020060117

Navigation