Skip to main content
Log in

X-Ray Diffraction Study of Effect of Filler Concentration and Thickness of Poly-p-xylylene–Cadmium Sulphide Nanocomposite Films on Their Structure

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The structure of poly-p-xylylene–cadmium sulfide (PPX–CdS) nanocomposite films of different thickness (~0.2, ~0.5, and ~1 μm) is studied by X-ray diffraction in a wide range of CdS concentrations, as well as the structure of single-component CdS and PPX films of different thickness. The films are obtained by solid-phase cryochemical synthesis on optical quartz and single-crystal silicon substrates. The results of the study show that CdS nanoparticles in PPX-CdS films with a thickness of ~ 0.2 μm with filler content of C ~ 10.5–13.5 vol % and in a CdS film of the same thickness have a crystal structure of a wurtzite type with an average size of coherent scattering regions of ~30 nm in PPX–CdS and ~60 nm in CdS films. For nanocomposite films with a thickness of ~0.2 μm (C ~ 8 vol %), ~0.5 and ~1 μm (C ~ 5–90 vol %), as well as for a CdS film with a thickness of ~1 μm, only diffusive diffraction maxima are observed, on the basis of which the conclusion is drawn that the CdS nanoparticles in these films have an amorphous or defective crystal structure and a size of ~1–3 nm. The PPX matrix in all studied nanocomposite films has a low-ordered (amorphous) structure, as in a single-component film of this polymer with a thickness of ~0.5 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. I. Grigor’ev, S. A. Zav’yalov, and S. N. Chvalun, Ross. Nanotekhnol. 1 (1–2), 58 (2006).

    Google Scholar 

  2. A. V. Gusev, K. A. Mailyan, A. V. Pebalk, I. A. Ryzhikov, and S. N. Chvalun, J. Commun. Technol. Electron. 54, 833 (2009).

    Article  Google Scholar 

  3. L. I. Trakhtenberg, G. N. Gerasimov, and E. I. Grigor’ev, Russ. J. Phys. Chem. A 73, 209 (1999).

    Google Scholar 

  4. Yu. D. Tretyakov and E. A. Goodilin, Russ. Chem. Rev. 78, 801 (2009).

    Article  CAS  Google Scholar 

  5. S. A. Zavyalov, E. I. Grigoriev, et al., Int. J. Nanosci. 4, 149 (2005).

    Article  CAS  Google Scholar 

  6. S. A. Ozerin, E. V. Kireeva, E. I. Grigor’ev, G. N. Gerasimov, and S. N. Chvalun, Polymer Sci., Ser. A 49, 809 (2007).

    Article  Google Scholar 

  7. A. A. Nesmelov, L. N. Oveshnikov, S. A. Ozerin, et al., J. Phys. Chem. C 123, 10517 (2019).

    Article  CAS  Google Scholar 

  8. P. V. Morozov, E. I. Grigor’ev, S. A. Zavyalov, and S. N. Chvalun, Phys. Solid State 54, 2291 (2012).

    Article  CAS  Google Scholar 

  9. O. P. Ivanova, E. P. Krinichnaya, S. A. Zavyalov, and T. S. Zhuravleva, Nanotechnol. Russ. 12, 627 (2017).

    Article  CAS  Google Scholar 

  10. I. A. Misurkin, S. V. Titov, T. S. Zhuravleva, I. V. Klimenko, S. A. Zav’yalov, E. I. Grigor’ev, and S. N. Chvalun, Russ. J. Phys. Chem. A 83, 450 (2009).

    Article  CAS  Google Scholar 

  11. T. S. Zhuravleva, O. P. Ivanova, E. P. Krinichnaya, I. A. Misurkin, S. V. Titov, S. A. Zav’yalov, and E. I. Grigor’ev, Russ. J. Phys. Chem. B 5, 681 (2011).

    Article  CAS  Google Scholar 

  12. O. P. Ivanova, E. P. Krinichnaya, P. V. Morozov, S. A. Zav’yalov, and T. S. Zhuravleva, Nanotechnol. Russ. 14, 7 (2019).

    Article  CAS  Google Scholar 

  13. S. A. Zavyalov, A. N. Pivkina, and J. Schoonman, Solid State Ionics 147, 415 (2002).

    Article  CAS  Google Scholar 

  14. E. P. Krinichnaya, O. P. Ivanova, S. A. Zavyalov, E. I. Grigoriev, and T. S. Zhuravleva, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 25 (2012).

    Article  CAS  Google Scholar 

  15. A. V. Krivandin, A. B. Solov’eva, and N. N. Glagolev, et al., Polymer 44, 5789 (2003).

    Article  CAS  Google Scholar 

  16. C. F. Holder and R. E. Schaak, ACS Nano 13, 7359 (2019).

    Article  CAS  Google Scholar 

  17. R. J. Baranayake, G. W. Wen, and J. Y. Lin, et al., Appl. Phys. Lett. 67, 831 (1995).

    Article  Google Scholar 

  18. R. Benerjee, R. Jayakrishnan, and P. Ayyub, J. Phys.: Condens. Matter 12, 10647 (2000).

    Google Scholar 

  19. N. S. Kozhevnikova, A. S. Vorokh, and A. A. Uritskaya, Russ. Chem. Rev. 84, 225 (2015).

    Article  Google Scholar 

  20. A. S. Vorokh and A. A. Rempel’, Dokl. Phys. 52, 200 (2007).

    Article  CAS  Google Scholar 

  21. A. S. Vorokh, N. S. Kozhevnikova, and A. A. Rempel’, Bull. Russ. Acad. Sci.: Phys. 72, 1395 (2008).

    Article  Google Scholar 

  22. N. Herron, Y. Wang, and H. Eckert, J. Am. Chem. Soc. 112, 1322 (1990).

    Article  CAS  Google Scholar 

  23. Y. Wang and N. Herron, Phys. Rev. B 42, 7253 (1990).

    Article  CAS  Google Scholar 

  24. N. Herron, A. Suna, and Y. Wang, J. Chem. Soc. Dalton Trans. 15, 2329 (1992).

    Article  Google Scholar 

  25. J. Nanda, A. K. Beena, and D. Sarma, Phys. Rev. B 59, 7473 (1998).

    Article  Google Scholar 

  26. T. Vossmeyer, L. Katsikas, M. Giersig, et al., J. Phys. Chem. 98, 7665 (1994).

    Article  CAS  Google Scholar 

  27. Ch. E. Junkermeier, J. P. Levis, and W. G. Bryant, Phys. Rev. B 79, 125323 (2009).

    Article  Google Scholar 

  28. S. Kubo and B. Wunderlich, J. Polym. Sci. Polym. Phys. Ed. 10, 1949 (1972).

    CAS  Google Scholar 

  29. G. Treiber, K. Boehlke, A. Weitz, and B. Wunderlich, J. Polym. Sci. Polym. Phys. Ed. 11, 1111 (1973).

    Article  CAS  Google Scholar 

  30. M. Gazicki, G. Surendran, W. James, and H. Yasuda, J. Polym. Sci. A 24, 215 (1986).

    Article  CAS  Google Scholar 

  31. D. R. Streltsov, K. A. Mailyan, A. V. Gusev, et al., Polymer 71, 60 (2015).

    Article  CAS  Google Scholar 

  32. K. A. Mailyan, S. N. Chvalun, A. V. Pebalk, and I. E. Kardash, Vysokomol. Soedin. A 34 (9), 53 (1992).

    CAS  Google Scholar 

  33. A. A. Knyazeva, S. A. Ozerin, E. I. Grigor’ev, S. N. Chvalun, S. A. Zav’yalov, and I. E. Kardash, Polymer Sci., Ser. B 47, 210 (2005).

    Google Scholar 

  34. D. R. Streltsov, K. A. Mailyan, A. V. Gusev, et al., Appl. Phys. A 110, 413 (2013).

    Article  CAS  Google Scholar 

  35. B. K. Vainshtein, Diffraction of X-rays by Chain Molecules (Akad. Nauk SSSR, Moscow, 1963; Am. Elsevier, New York, 1966).

Download references

Funding

Study was supported by the Russian Foundation for Basic Research (grant no. 18-03-00582), in the frame of state assignments for the Institute of Biochemical Physics of the Russian Academy of Sciences (no. 01201253304) and the Institute of Problems of Chemical Physics of the Russian Academy of Sciences (no. АААА-А19-119101590029-0).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. P. Ivanova or T. S. Zhuravleva.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, O.P., Krivandin, A.V., Krinichnaya, E.P. et al. X-Ray Diffraction Study of Effect of Filler Concentration and Thickness of Poly-p-xylylene–Cadmium Sulphide Nanocomposite Films on Their Structure. Nanotechnol Russia 15, 753–759 (2020). https://doi.org/10.1134/S1995078020060105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020060105

Navigation