Skip to main content
Log in

Pt/Ti1 – xRuxO2 – δ Cathodic Electrocatalysts for Fuel Cells

  • SELF-ASSEMBLED STRUCTURES AND NANOASSEMBLIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

In  this  paper,  we  study  the  electrocatalytic  activity  and stability of materials in the Pt/Ti1 – xRuxO2 – δ system, in oxygen electroreduction reactions, including under operating conditions in a fuel cell (FC). All the obtained electrocatalytic materials are shown to be stable in the electrode potential range of operation of a hydrogen-air FC, while the electroreduction of oxygen proceeds mainly by a four-electron mechanism. The power characteristics of the FC with the obtained electrocatalyst are comparable to those of a FC with a commercial electrocatalyst, while the stability of the obtained electrocatalysts is 5–6 times higher than that of Pt/C catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. N. Wagner, W. Schnurnberger, B. Mueller, and M. Lang, Electrochim. Acta 43, 3785 (1998). https://doi.org/10.1016/S0013-4686(98)00138-8

    Article  CAS  Google Scholar 

  2. I. A. Stenina, E. Y. Safronova, A. B. Yaroslavtsev, et al., Therm. Eng. 63, 385 (2016). https://doi.org/10.1134/S0040601516060070

    Article  CAS  Google Scholar 

  3. B. Wang, J. Power Sources 152, 1 (2005). https://doi.org/10.1016/j.jpowsour.2005.05.098

    Article  CAS  Google Scholar 

  4. Yu. Dobrovolsky, L. Leonova, and A. Vakulenko, Solid State Ionics 86, 1017 (1996). https://doi.org/10.1016/0167-2738(96)00244-5

    Article  Google Scholar 

  5. K. C. Neyerlin, R. Srivastava, C. Yu, and P. Strasser, J. Power Sources 186, 261 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.062

    Article  CAS  Google Scholar 

  6. S. Mukerjee, S. Srinivasan, and M. P. Soriaga, J. Electrochem. Soc. 142, 1409 (1995). https://doi.org/10.1149/1.2048590

    Article  CAS  Google Scholar 

  7. R. C. Koffi, C. Coutanceau, E. Garnier, et al., Electrochim. Acta 50, 4117 (2005). https://doi.org/10.1016/j.electacta.2005.01.028

    Article  CAS  Google Scholar 

  8. S. Mukerjee, S. J. Lee, E. A. Ticianelli, et al., Electrochem. Solid-State Lett. 2, 12 (1999). https://doi.org/10.1149/1.1390718

    Article  CAS  Google Scholar 

  9. L. Frolova, N. Lyskov, and Yu. Dobrovolsky, Solid State Ionics 225, 92 (2012). https://doi.org/10.1016/j.ssi.2012.02.013

    Article  CAS  Google Scholar 

  10. C.-P. Lo and A. Kumar, ECS Trans. 33, 493 (2010). https://doi.org/10.1149/1.3484547

    Article  CAS  Google Scholar 

  11. M. Gutz and H. Wendt, Electrochim. Acta 43, 3637 (1998). https://doi.org/10.1016/S0013-4686(98)00121-2

    Article  Google Scholar 

  12. X. Liu, J. Chena, G. Liu, et al., J. Power Sources 195, 4098 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.077

    Article  CAS  Google Scholar 

  13. B. Ruiz-Camacho, O. Martínez-Álvarez, H. H. Rodríguez-Santoyo, and V. Granados-Alejo, J. Electroanal. Chem. 725, 19 (2014). https://doi.org/10.1016/j.jelechem.2014.04.019

    Article  CAS  Google Scholar 

  14. B. Ruiz-Camacho, H. Martínez-González, R. G. González-Huerta, and M. Tuño-Velázquez, Int. J. Hydrogen Energy 39, 16731 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.109

    Article  CAS  Google Scholar 

  15. L. A. Frolova and Yu. A. Dobrovolsky, Russ. Chem. Bull. 60, 1101 (2011).

    Article  CAS  Google Scholar 

  16. M. T. Colomer and J. R. Jurado, Chem. Mater. 12, 923 (2000). https://doi.org/10.1021/cm9903879

    Article  CAS  Google Scholar 

  17. A. A. Belmesov, A. A. Baranov, and A. V. Levchenko, Russ. J. Electrochem. 54, 493 (2018). https://doi.org/10.1134/S1023193518060046

    Article  CAS  Google Scholar 

  18. A. A. Bel’mesov, A. V. Levchenko, T. A. Palankoev, L. S. Leonova, A. E. Ukshe, A. I. Chikin, and N. G. Bukun, Russ. J. Electrochem. 49, 831 (2013). https://doi.org/10.1134/S1023193513080053

    Article  CAS  Google Scholar 

  19. A. S. Zyubin, T. S. Zyubina, Yu. A. Dobrovol’skii, A. A. Bel’mesov, and V. M. Volokhov, Russ. J. Inorg. Chem. 59, 816 (2014). https://doi.org/10.1134/S0036023614080221

    Article  CAS  Google Scholar 

  20. C. L. Green and A. Kucernak, J. Phys. Chem. B 106, 1036 (2002). https://doi.org/10.1021/jp0131931

    Article  CAS  Google Scholar 

  21. B. P. Tarasov, V. E. Muradyan, and A. A. Volodin, Russ. Chem. Bull. 60, 1261 (2011). https://link.springer.com/content/pdf/10.1007/s11172-011-0194-8.pdf.

    Article  CAS  Google Scholar 

  22. A. A. Volodin, A. A. Belmesov, and  V. B. Murzin, Inorg. Mater. 49, 656 (2013). https://doi.org/10.1134/S0020168513060174

    Article  CAS  Google Scholar 

  23. V. B. Avakov, V. A. Bogdanovskaya, V. A. Vasilenko, B. A. Ivanitskii, E. M. Kol’tsova, A. V. Kuzov, A. V. Kapustin, I. K. Landgraf, M. M. Stankevich, and M. R. Tarasevich, Russ. J. Electrochem. 51, 719 (2015).

    Article  CAS  Google Scholar 

  24. M. Shao, Q. Chang, J.-P. Dodelet, and R. Chenitz, Chem. Rev. 116, 3594 (2016). https://doi.org/10.1021/acs.chemrev.5b00462

    Article  CAS  Google Scholar 

  25. U. S. Drive Fuel Cell Tech Team Cell Component Accelerated Stress Test and Polarization Curve Protocols for PEM Fuel Cells. http://energy.gov/sites/prod/files/2015/08/f25/fcto_dwg_usdrive_fctt_accelerated_stress_tests_jan2013.pdf. Accessed January 2013.

Download references

ACKNOWLEDGMENTS

The work was carried out using the resources of the NTI Competence Center on Technologies for New and Mobile Energy Sources at the IPCP RAS and using the equipment of the Analytical Center for Collective Use of the IPCP RAS.

Funding

The work was partially carried out on the topic of the  State assignment, state registration no. AAAA-A19-119061890019-5, temkart 0089-2019-007 and was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 05.605.21.0188 of December 3, 2019, RFMEFI60519X0188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Belmesov.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belmesov, A.A., Levchenko, A.V., Baranov, A.A. et al. Pt/Ti1 – xRuxO2 – δ Cathodic Electrocatalysts for Fuel Cells. Nanotechnol Russia 15, 701–707 (2020). https://doi.org/10.1134/S199507802006004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507802006004X

Navigation