Skip to main content
Log in

Sulfonated Polyimide–Silica Composite Membranes: Preparation, Morphology and Proton Conductivity

  • POLYMER, BIOORGANIC, AND HYBRID NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Sulfonated polyimides (SPIs)/silica composite membranes were prepared via an in situ sol–gel reaction followed by solution casting. SPIs based on 1,4,5,8-naphthalene tetracarboxylic dianhydride, 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid and 4,4'-diaminodiphenyl ether have been chosen for the preparation of composite membranes due to their relatively high hydrolytic stability. Membranes varying in degree of sulfonation as well as silica content were characterized by FT-IR spectroscopy, thermal gravimetric analysis, transmission electron microscopy and impedance spectroscopy. It was found that the thermal and hydrolytic stability of membranes was enhanced by silica particles. Based on the morphological and conductivity data it is suggested that formation of a hydrogen bonded network of silanol groups of silica nanoparticles and sulfonic acid groups of the polymer matrix enhances the proton conductivity via the hopping mechanism of proton transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. C. H. Steele and A. Heinzel, Nature (London, U.K.) 414, 345 (2001).

    Article  CAS  Google Scholar 

  2. F. Barbir and S. Yazici, Int. J. Energy Res. 32, 369 (2008).

    Article  CAS  Google Scholar 

  3. B. Smitha, S. Sridhar, and A. A. Khan, J. Membr. Sci. 259, 10 (2005).

    Article  CAS  Google Scholar 

  4. K. A. Mauritz and R. B. Moore, Chem. Rev. 104, 4535 (2004).

    Article  CAS  Google Scholar 

  5. M. A. Hickner, H. Ghassemi, Y. S. Kim, et al., Chem. Rev. 104, 4587 (2004).

    Article  CAS  Google Scholar 

  6. C. Genies, R. Mercier, B. Sillion, et al., Polymer 42, 5097 (2001).

    Article  CAS  Google Scholar 

  7. W. Jang, C. Lee, S. Sundar, et al., Polymer Degrad. Stab. 90, 431 (2005).

    Article  CAS  Google Scholar 

  8. N. Asano, M. Aoki, S. Suzuki, et al., J. Am. Chem. Soc. 128, 1762 (2006).

    Article  CAS  Google Scholar 

  9. Y. Yan, O. Yamada, K. Tanaka, and K. Okamoto, Polymer J. 38, 197 (2006).

    Article  Google Scholar 

  10. J. Fang, X. Guo, S. Harada, et al., Macromolecules 35, 9022 (2002).

    Article  CAS  Google Scholar 

  11. Y. Hongyan, K. Shi, N. Song, et al., Polymer 103, 171 (2016).

    Article  Google Scholar 

  12. C. Lee, S. Sundar, J. Kwon, and H. Han, J. Polym. Sci., Part A 42, 3621 (2004).

    Article  CAS  Google Scholar 

  13. J. Long, H. Yang, Y. Wang, et al., ChemElectroChem 7, 937 (2020).

    Article  CAS  Google Scholar 

  14. N. Ali, F. Ali, S. Saeed, et al., J. Mater. Sci.: Mater. Electron. 30, 19164 (2019).

    CAS  Google Scholar 

  15. C. Genies, R. Mercier, B. Sillion, et al., Polymer 42, 359 (2001).

    Article  CAS  Google Scholar 

  16. C. I. Filipoi, X. Zhu, D. Turp, et al., Int. J. Hydrogen. Energy 37, 14454 (2012).

    Article  Google Scholar 

  17. S. T. Muntha, M. Ajmal, H. Naeem, et al., Polym. Compos. 40, 1897 (2019).

    Article  CAS  Google Scholar 

  18. K. T. Adjemian, R. Dominey, L. Krishnan, et al., Chem. Mater. 18, 2238 (2006).

    Article  CAS  Google Scholar 

  19. Z. G. Shao, P. Joghee, and I. M. Hsing, J. Membr. Sci. 229, 43 (2004).

    Article  CAS  Google Scholar 

  20. S. T. Muntha, J. Ambreen, M. Siddiq, et al., JTCM (2019).

  21. R. A. Zoppi and S. P. Nunes, J. Electroanal. Chem. 445, 39 (1998).

    Article  CAS  Google Scholar 

  22. A. K. Sahu, G. Selvarani, S. Pitchumani, et al., J. Electrochem. Soc. 154, B123 (2007).

    Article  CAS  Google Scholar 

  23. K. T. Adjemian, S. Srinivasan, J. Benziger, and A. B. Bocarsly, J. Power Sources 109, 356 (2002).

    Article  CAS  Google Scholar 

  24. R. Jiang, H. R. Kunz, and M. J. Fenton, J. Membr. Sci. 272, 116 (2006).

    Article  CAS  Google Scholar 

  25. I. Colicchio, D. E. Demco, M. Baias, et al., J. Membr. Sci. 337, 125 (2009).

    Article  CAS  Google Scholar 

  26. Z. Gaowen and Z. Zhentao, J. Membr. Sci. 261, 107 (2005).

    Article  Google Scholar 

  27. P. Musto, G. Ragosta, G. Scarinzi, and L. Mascia, Polymer 45, 1697 (2004).

    Article  CAS  Google Scholar 

  28. S. Panero, P. Fiorenza, M. A. Navarra, et al., J. Electochem. Soc. 152, A2400 (2005).

    Article  CAS  Google Scholar 

  29. C. H. Lee, S. Y. Hwang, J. Y. Sohna, et al., J. Power Sources 163, 339 (2006).

    Article  CAS  Google Scholar 

  30. L. Zou, S. Roddecha, and M. Anthamatten, Polymer 50, 3136 (2009).

    Article  CAS  Google Scholar 

Download references

Funding

The authors greatly thank the Ministry of Science and  Higher  Education  of the Russian Federation (contract no. 05.605.21.0188 from 3 December 2019 (RFMEFI60519X0188)) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M., Zhu, X., Melnikov, A.P. et al. Sulfonated Polyimide–Silica Composite Membranes: Preparation, Morphology and Proton Conductivity. Nanotechnol Russia 15, 778–784 (2020). https://doi.org/10.1134/S1995078020050043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020050043

Navigation