Abstract
The unique physical and chemical properties of carbon nanotubes (CNTs), including SWCNTs (single-walled carbon nanotubes), allow their applications in many fields, including biomedicine. The optical properties of SWCNTs are attractive for application in the field of nanobiotechnology compared to MWCNTs (multi-walled carbon nanotubes). An important objective of SWCNT application for biomedical purposes is obtaining homogenous dispersions characterized by bioavailability and biocompatibility. The possibility of obtaining homogenous dispersions of different types of SWCNTs in biocompatible media for further use in different biomedical experiments and applications has been investigated. The sizes of SWCNT agglomerates in prepared dispersions were measured by the method of dynamic light scattering; bioavailability was studied by dark field microscopy in BEAS-2B bronchial epithelium cells. The dispersions were analyzed for the presence of bacterial contamination. Biocompatible and bioavailable dispersions have been obtained on the basis of cell culture media and 1% bovine serum albumin, which can be used in experiments on assessing the safety of SWCNTs at biological objects but have a number of limitations in the field of biomedicine. Dispergents based on lung surfactant components, which could be used in biomedical applications (DPPC and Survanta®), did not show efficency.
This is a preview of subscription content, access via your institution.






REFERENCES
https://www.transparencymarketresearch.com/pressrelease/carbon-nano-tubes-market.htm.
Z. Liu, S. Tabakman, K. Welsher, and H. Dai, Nano Res. 2, 85 (2009). https://doi.org/10.1007/s12274-009-9009-8
A. Bianco, K. Kostarelos, and M. Prato, Curr. Opin. Chem. Biol. 9, 674 (2005). https://doi.org/10.1016/j.cbpa.2005.10.005
N. W. S. Kam, Z. Liu, and H. J. Dai, J. Am. Chem. Soc. 127 (2005). https://doi.org/10.1021/ja053962k
Z. Liu, S. M. Tabakman, Z. Chen, and H. Dai, Nat. Protoc. 4, 1372 (2009). https://doi.org/10.1038/nprot.2009.146
P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman, J. Am. Chem. Soc. 126, 15638 (2004). https://doi.org/10.1021/ja0466311
R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, et al., Proc. Nat. Acad. Sci. U. S. A. 100, 4984 (2003). https://doi.org/10.1073/pnas.0837064100
M. Zhou, S. Liu, Yaqi Jiang, et al., Adv. Funct. Mater. 25, 4730 (2015). https://doi.org/10.1002/adfm.201501434
L. Wang, R. R. Mercer, Y. Rojanasakul, et al., J. Toxicol. Environ. Health A 73, 410 (2010). https://doi.org/10.1080/15287390903486550
R. Dvash, A. Khatchatouriants, L. J. Solmesky, et al., J. Control Release 170, 295 (2013). https://doi.org/10.1016/j.jconrel.2013.05.042
O. V. Kharissova, B. I. Kharisov, and E. G. de Casas Ortiz, RSC Adv. 3, 258 (2013). https://doi.org/10.1039/c3ra43852
J. S. Kim, K. S. Song, J. H. Lee, and I. J. Yu, Arch. Toxicol. 85, 1499 (2011). https://doi.org/10.1007/s00204-011-0723-0
M. F. Islam, E. Rojas, D. M. Bergey, et al., Nano Lett. 3, 269 (2003). https://doi.org/10.1021/nl025924u
L. Wang, V. Castranova, A. Mishra, et al., Part. Fibre Toxicol. 7 (2010). https://doi.org/10.1186/1743-8977-7-31
M. Davoren, E. Herzog, A. Casey, et al., Toxicol. In Vitro 21, 438 (2007). https://doi.org/10.1016/j.tiv.2006.10.007
K. Pulskamp, S. Diabaté, and H. F. Krug, Toxicol. Lett. 168, 58 (2007). https://doi.org/10.1016/j.toxlet.2006.11.001
K. Fujita, M. Fukuda, S. Endoh, et al., Inhalation Toxicol. 27, 207 (2015). https://doi.org/10.3109/08958378.2015.1026620
OCSiAl. https://ocsial.com/en/material-solutions/tuball/.
Y. Li and D. Boraschi, Nanomedicine (London) 11 (3), 269 (2016). https://doi.org/10.2217/nnm.15.19619
M. Ema, M. Gamo, and K. Honda, Regul. Toxicol. Pharmacol. 74, 42 (2016). https://doi.org/10.1016/j.yrtph.2015.11.015
C. W. Lam, J. T. James, R. McCluskey, et al., Crit. Rev. Toxicol. 36, 189 (2006). https://doi.org/10.1080/10408440600570233
R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, et al., Toxicol. Sci. 101, 239 (2008). https://doi.org/10.1093/toxsci/kfm240
State Pharmacopoeia of the Russian Federation, XIV ed., Approved by order of the Ministry of Health of the Russian Federation dated October 31, 2018.
Yu. V. Cherednichenko, V. G. Evtyugin, L. R. Nigamatzyanova, F. S. Akhatova, E. V. Rozhina, and R. F. Fakhrullin, Nanotechnol. Russ. 14, 456 (2019).
A. V. Melezhik, P. A. Khokhlov, V. S. Lyubimov, and A. G. Tkachev, Vestn. TGTU, No. 3, 672 (2013).
C. Chen, L. Hou, H. Zhang, et al., J. Drug. Target. 21, 809 (2013). https://doi.org/10.3109/1061186X.2013.829071
ACKNOWLEDGMENTS
The authors are grateful to the OCSiAL group of companies for providing TUBALL™ SWCNTs for the study.
Funding
This study was supported by the Russian Foundation for Basic Research (project no. 19-315-90046); the development of methods for visualization of nanomaterials in cells (R.F. Fakhrullin) was supported by the grant of the President of the Russian Federation for young scientists (MD-2153.2020.3).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by E. Makeeva
Rights and permissions
About this article
Cite this article
Timerbulatova, G.A., Dimiev, A.M., Khamidullin, T.L. et al. Dispersion of Single-Walled Carbon Nanotubes in Biocompatible Environments. Nanotechnol Russia 15, 437–444 (2020). https://doi.org/10.1134/S1995078020040163
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1995078020040163