Skip to main content

Dispersion of Single-Walled Carbon Nanotubes in Biocompatible Environments


The unique physical and chemical properties of carbon nanotubes (CNTs), including SWCNTs (single-walled carbon nanotubes), allow their applications in many fields, including biomedicine. The optical properties of SWCNTs are attractive for application in the field of nanobiotechnology compared to MWCNTs (multi-walled carbon nanotubes). An important objective of SWCNT application for biomedical purposes is obtaining homogenous dispersions characterized by bioavailability and biocompatibility. The possibility of obtaining homogenous dispersions of different types of SWCNTs in biocompatible media for further use in different biomedical experiments and applications has been investigated. The sizes of SWCNT agglomerates in prepared dispersions were measured by the method of dynamic light scattering; bioavailability was studied by dark field microscopy in BEAS-2B bronchial epithelium cells. The dispersions were analyzed for the presence of bacterial contamination. Biocompatible and bioavailable dispersions have been obtained on the basis of cell culture media and 1% bovine serum albumin, which can be used in experiments on assessing the safety of SWCNTs at biological objects but have a number of limitations in the field of biomedicine. Dispergents based on lung surfactant components, which could be used in biomedical applications (DPPC and Survanta®), did not show efficency.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.



  2. Z. Liu, S. Tabakman, K. Welsher, and H. Dai, Nano Res. 2, 85 (2009).

    Article  CAS  Google Scholar 

  3. A. Bianco, K. Kostarelos, and M. Prato, Curr. Opin. Chem. Biol. 9, 674 (2005).

    Article  CAS  Google Scholar 

  4. N. W. S. Kam, Z. Liu, and H. J. Dai, J. Am. Chem. Soc. 127 (2005).

  5. Z. Liu, S. M. Tabakman, Z. Chen, and H. Dai, Nat. Protoc. 4, 1372 (2009).

    Article  CAS  Google Scholar 

  6. P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman, J. Am. Chem. Soc. 126, 15638 (2004).

    Article  CAS  Google Scholar 

  7. R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, et al., Proc. Nat. Acad. Sci. U. S. A. 100, 4984 (2003).

    Article  CAS  Google Scholar 

  8. M. Zhou, S. Liu, Yaqi Jiang, et al., Adv. Funct. Mater. 25, 4730 (2015).

    Article  CAS  Google Scholar 

  9. L. Wang, R. R. Mercer, Y. Rojanasakul, et al., J. Toxicol. Environ. Health A 73, 410 (2010).

    Article  CAS  Google Scholar 

  10. R. Dvash, A. Khatchatouriants, L. J. Solmesky, et al., J. Control Release 170, 295 (2013).

    Article  CAS  Google Scholar 

  11. O. V. Kharissova, B. I. Kharisov, and E. G. de Casas Ortiz, RSC Adv. 3, 258 (2013).

  12. J. S. Kim, K. S. Song, J. H. Lee, and I. J. Yu, Arch. Toxicol. 85, 1499 (2011).

    Article  CAS  Google Scholar 

  13. M. F. Islam, E. Rojas, D. M. Bergey, et al., Nano Lett. 3, 269 (2003).

    Article  CAS  Google Scholar 

  14. L. Wang, V. Castranova, A. Mishra, et al., Part. Fibre Toxicol. 7 (2010).

  15. M. Davoren, E. Herzog, A. Casey, et al., Toxicol. In Vitro 21, 438 (2007).

    Article  CAS  Google Scholar 

  16. K. Pulskamp, S. Diabaté, and H. F. Krug, Toxicol. Lett. 168, 58 (2007).

    Article  CAS  Google Scholar 

  17. K. Fujita, M. Fukuda, S. Endoh, et al., Inhalation Toxicol. 27, 207 (2015).

    Article  CAS  Google Scholar 

  18. OCSiAl.

  19. Y. Li and D. Boraschi, Nanomedicine (London) 11 (3), 269 (2016).

    Article  CAS  Google Scholar 

  20. M. Ema, M. Gamo, and K. Honda, Regul. Toxicol. Pharmacol. 74, 42 (2016).

    Article  CAS  Google Scholar 

  21. C. W. Lam, J. T. James, R. McCluskey, et al., Crit. Rev. Toxicol. 36, 189 (2006).

    Article  CAS  Google Scholar 

  22. R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, et al., Toxicol. Sci. 101, 239 (2008).

    Article  CAS  Google Scholar 

  23. State Pharmacopoeia of the Russian Federation, XIV ed., Approved by order of the Ministry of Health of the Russian Federation dated October 31, 2018.

  24. Yu. V. Cherednichenko, V. G. Evtyugin, L. R. Nigamatzyanova, F. S. Akhatova, E. V. Rozhina, and R. F. Fakhrullin, Nanotechnol. Russ. 14, 456 (2019).

    Article  CAS  Google Scholar 

  25. A. V. Melezhik, P. A. Khokhlov, V. S. Lyubimov, and A. G. Tkachev, Vestn. TGTU, No. 3, 672 (2013).

    Google Scholar 

  26. C. Chen, L. Hou, H. Zhang, et al., J. Drug. Target. 21, 809 (2013).

    Article  CAS  Google Scholar 

Download references


The authors are grateful to the OCSiAL group of companies for providing TUBALL™ SWCNTs for the study.


This study was supported by the Russian Foundation for Basic Research (project no. 19-315-90046); the development of methods for visualization of nanomaterials in cells (R.F. Fakhrullin) was supported by the grant of the President of  the Russian Federation for young scientists (MD-2153.2020.3).

Author information

Authors and Affiliations


Corresponding author

Correspondence to L. M. Fatkhutdinova.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Timerbulatova, G.A., Dimiev, A.M., Khamidullin, T.L. et al. Dispersion of Single-Walled Carbon Nanotubes in Biocompatible Environments. Nanotechnol Russia 15, 437–444 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: