Abstract
The synthesis of new forms of hydroxyapatite (HA) and the study of their interaction with living cells are a promising area of modern nanotechnology in chemistry and cell biology. A comparative analysis of the interaction between HA nanoparticles of various origin with living cells is carried out. Scanning electron microscopy revealed that native HA (NHA) particles isolated from native bone tissue are several times larger than that of synthetic HA (SHA) synthesized by a sedimentation method. The pore size and specific surface area of SHA is more than three times larger than similar NHA parameters. The presence of SHA in the culture medium, together with mesenchymal stromal cells, reduces their adhesion, flattening, and proliferation, in contrast to the presence of NHA particles, which have virtually no negative effect on the growth and reproduction of living cells.
This is a preview of subscription content, access via your institution.





REFERENCES
H. Zhou and J. Lee, Acta Biomater. 7, 2769 (2011). https://doi.org/10.1016/j.actbio.2011.03.019
L. Chen, J. M. Mccrate, J. C.-M. Lee, and H. Li, Nanotechnology 22, 105708 (2011). https://doi.org/10.1088/0957-4484/22/10/105708
A. Matsumine, K. Kusuzaki, T. Matsubara, et al., J. Surg. Oncol. 93, 212 (2006). https://doi.org/10.1002/jso.20355
S. V. Dorozhkin and M. Epple, Angew. Chem. Int. Ed. Eng. 41, 3130 (2002). https://doi.org/10.1002/1521-3773(20020902)
L. John, M. Janeta, and S. Szafert, Mater. Sci. Eng. C 78, 901 (2017). https://doi.org/10.1016/j.msec.2017.04.133
P. A. Brunton, R. P. Davies, J. L. Burke, et al., Br. Dent. J. 215, E6 (2013). >https://doi.org/10.1038/sj
M. Okada and T. Furuzono, Sci. Technol. Adv. Mater. 13, 064103 (2012). https://doi.org/10.1088/1468-6996/13/6/064103
X.-Y. Zhao, Y.-J. Zhu, F. Chen, et al., Cryst. Eng. Commun. 15, 7926 (2013). https://doi.org/10.1039/C3CE41255E
M. Kolodziejczyk, D. Smolen, T. Chudoba, et al., Tissue Eng. Regener. Med. 8, 235 (2014).
M. Bilton, S. J. Milne, and A. P. Brown, J. Inorg. Non-Met. Mater. 2, 1 (2012). https://doi.org/10.4236/ojinm.2012.21001
S. S. A. Abidi and Q. J. Murtaza, Mater. Sci. Technol. 30, 307 (2014). https://doi.org/10.1016/j.jmst.2013.10.011
D. Smolen, T. Chudoba, I. Malka, et al., Int. J. Nanomed. 8, 653 (2013). https://doi.org/10.2147/ijn.s39299
A. K. Nayak, Int. J. Chem. Technol. Res. 2, 903 (2010).
M. Šupová, J. Nanosci. Nanotechnol. 14, 1 (2014). https://doi.org/10.1166/jnn.2014.8895
X. Zhao, S. Ng, B. C. Heng, et al., J. Arch. Toxicol. 87, 1037 (2013). https://doi.org/10.1007/s00204-012-0827-1
M. R. Wiesner, G. V. Lowry, P. Alvarez, et al., Environ. Sci. Technol. 40, 4336 (2006). https://doi.org/10.1021/es062726m
A. D. Maynard, R. J. Aitken, T. Butz, et al., Nature (London, U.K.) 444, 267 (2006). https://doi.org/10.1038/444267
M. Motskin, D. M. Wright, K. Muller, et al., Biomaterials 30, 3307 (2009). https://doi.org/10.1016/j.biomaterials.2009.02.044
L. Chen, J. M. Mccrate, J. C.-M. Lee, and H. Li, Nanotechnology 22, 105708 (2011). https://doi.org/10.1088/0957-4484/22/10/105708
Yu. A. Nashchekina, A. S. Chabina, O. M. Osmolovskaya, et al., Tsitologiya, No. 10, 813 (2018).
J. Idaszek, E. Kijeńska, M. Łojkowski, and W. Swieszkowski, Appl. Surf. Sci. 388, 762 (2016). https://doi.org/10.1016/j.apsusc.2016.03.038
E. Kijeńska, S. Zhang, M. P. Prabhakaran, et al., Int. J. Polym. Mater. Polym. Biomater. 65, 807 (2016). https://doi.org/10.1080/00914037.2016.1163561
I. P. Dobrovol’skaya, N. S. Tsarev, O. M. Osmolovskaya, I. A. Kasatkin, E. M. Ivan’kova, E. N. Popova, G. A. Pankova, and V. E. Yudin, Russ. J. Appl. Chem. 91, 368 (2018).
T. J. Webster, C. Ergun, R. H. Doremus, et al., Biomaterials 22, 1327 (2001). https://doi.org/10.1016/s0142-9612(00)00285-4
L. L. Hench and J. M. Polak, Science (Washington, DC, U. S.) 295, 1014 (2002). https://doi.org/10.1126/science.1067404
Y. Cai, Y. Liu, W. Yan, et al., J. Mater. Chem. 17, 3780 (2007).
S. J. Kalita, A. Bhardwaj, and H. A. Bhatt, Mater. Sci. Eng. C 27, 441 (2007).
N. Tran and T. J. Webster, Acta Biomater. 7, 1298 (2011). https://doi.org/10.1016/j.actbio.2010.10.004
M. S. Laranjeira, M. H. Fernandes, and F. J. Monteiro, J. Biomed. Mater. Res. A 95, 891 (2010). https://doi.org/10.1002/jbm.a.32916
L. Chen, J. M. Mccrate, J. C. M. Lee, and H. Li, Nanotechnology 22, 105708 (2011). https://doi.org/10.1088/0957-4484/22/10/105708
Funding
The study was financed by the Russian Science Foundation (project no. 19-73-30003).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nashchekina, Y.A., Dobrovol’skaya, I.P., Ivan’kova, E.M. et al. Influence of Synthetic and Native Hydroxyapatite Nanoparticles on the Properties of Mesenchymal Stromal Cells of Bone Marrow. Nanotechnol Russia 15, 500–506 (2020). https://doi.org/10.1134/S1995078020040114
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1995078020040114