Skip to main content
Log in

Model Study of a Cold Start of a Power Plant Based on a Polymer Electrolyte Membrane Fuel Cells in the Conditions of Arctic Temperatures

  • DEVICES AND PRODUCTS BASED ON NANOMATERIALS AND NANOTECHNOLOGIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A model calculation of the startup of a power plant based on a polymer electrolyte membrane fuel cell (PEMFC). The power plant is equipped with a recombiner with a nanostructured hydrogen oxidation catalyst and a bubbler, filled with methanol, which absorbs water vapor, drying the heated air to prevent ice formation inside the fuel cell, which allows for autonomous cold start and operation in the Arctic region. A mathematical model was developed of start-up of PEMFC capacity 1 kW from ambient temperature in the Arctic region to the operating temperature of the fuel cell (warming up from –50 to +50°C). The characteristics of the heating modes were determined for the gradients of the fuel cell heating rate from 0.1 to 0.5°C/s. The proposed scheme of the heating unit and the mode of starting the power plant make it possible to reduce the heating element heating time to the operating temperature to ~6 min, as well as to reduce the volume of the heating unit used and to reduce the consumption of hydrogen supplied in a mixture with air to 3 vol %. The proposed scenario of cold start ensures the temperature stability of the heating unit, which guarantees the safety of heating the fuel cell and the installation as a whole. The use of methanol to remove water vapor from the hydrogen stream and replace them with methanol vapor allows the cold start temperature of the fuel cell to be reduced to -50°C due to the prevention of crystallization of water vapor in the bulk of FC components at the initial stages of heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. I. Kozlov and V. N. Fateev, Transp. Al’tern. Topl., No. 2 (38), 7 (2014).

  2. R. C. McDonald, C. K. Mittelsteadt, and E. L. Thompson, Fuel Cells, No. 3, 208 (2004). https://doi.org/10.1002/fuce.200400015

  3. Q. Yan, H. Toghiani, Y. Lee, et al., J. Power Sources 160, 1242 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.075

    Article  CAS  Google Scholar 

  4. M. Cappadonia, J. W. Erning, and U. Stimming, J. Electroanal. Chem. 376, 189 (1994). https://doi.org/10.1016/0022-0728(94)03586-5

    Article  CAS  Google Scholar 

  5. M. Sliwinska-Bartkowiak, J. Gras, and R. Sikorski, Langmuir 15, 6060 (1999). https://doi.org/10.1021/la9814642

    Article  CAS  Google Scholar 

  6. M. Sliwinska-Bartkowiak, G. Dudziak, R. Sikorski, et al., Phys. Chem. Chem. Phys. 3, 1179 (2001). https://doi.org/10.1039/B009792F

    Article  CAS  Google Scholar 

  7. J. Hou, H. Yu, B. Yi, et al., Electrochem. Solid-State Lett. 10, 11 (2007). https://doi.org/10.1149/1.2363952

    Article  CAS  Google Scholar 

  8. M. Khandelwal, S. Lee, and M. M. Mench, J. Power Sources 172, 816 (2007). https://doi.org/10.1016/j.jpowsour.2007.05.028

    Article  CAS  Google Scholar 

  9. R. Lin, Y. Weng, X. Lin, et al., Int. J. Hydrogen Energy 39, 18369 (2014). https://doi.org/10.1016/j.ijhydene.2014.09.065

    Article  CAS  Google Scholar 

  10. Q. Guo, Y. Luo, and K. Jiao, Int. J. Hydrogen Energy 38, 1004 (2014). https://doi.org/10.1016/j.ijhydene.2012.10.067

    Article  CAS  Google Scholar 

  11. Y. Tabe, M. Saito, K. Fukui, et al., J. Power Sources 208, 366 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.052

    Article  CAS  Google Scholar 

  12. Z. Wan, H. Chang, S. Shu, et al., Energies 7, 3179 (2014). https://doi.org/10.3390/en7053179

    Article  CAS  Google Scholar 

  13. L. Yao, J. Peng, J. Zhang, et al., Int. J. Hydrogen Energy 43, 15505 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.112

    Article  CAS  Google Scholar 

  14. A. Amamou, S. Kelouwani, L. Boulon, et al., IEEE Access. 4, 4989 (2016). https://doi.org/10.1109/ACCESS.2016.2597058

    Article  Google Scholar 

  15. W. S. Wheat, M. A. Meltser, and D. A. Masten, US Patent No. 8288049 B2 (2012).

  16. Y. Zhou, Y. Luo, S. Yu, et al., J. Power Sources 247, 738 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.023

    Article  CAS  Google Scholar 

  17. Y. Li, S. Xu, Z. Yang, et al., in Proceedings of the International Conference on Electric Information and Control Engineering, 2011, p. 5. https://doi.org/10.1109/ICEICE.2011.5776891

  18. N. Henao, S. Kelouwani, K. Agbossou, et al., J. Power Sources 220, 31 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.088

    Article  CAS  Google Scholar 

  19. J. Hwang, Appl. Energy 108, 184 (2013). https://doi.org/10.1016/j.apenergy.2013.03.025

    Article  CAS  Google Scholar 

  20. F. Knorr, D. Garcia, J. Schirmer, et al., Appl. Energy 238, 1 (2019). https://doi.org/10.1016/j.apenergy.2019.01.036

    Article  CAS  Google Scholar 

  21. T. F. Fuller and D. J. Wheeler, US Patent No. 6103410 (2000).

  22. A. Amamou, M. Kidayeni, L. Boulon, et al., Appl. Energy 216, 21 (2018). https://doi.org/10.1016/j.apenergy.2018.02.071

    Article  Google Scholar 

  23. M. Sundaresan, A Thermal Model to Evaluate Sub-Freezing Startup for a Direct Hydrogen Hybrid Fuel Cell Vehicle Polymer Electrolyte Fuel Cell Stack and System (Univ. of California, USA, 2004).

    Google Scholar 

  24. S. Surampudi, S. R. Narayanan, E. Vamos, et al., US Patent No. 5599638 (1997).

  25. A. Kindler, S. R. Narayanan, and T. I. Valdez, US Patent No. 6440594 B1 (2002).

  26. A. Heinzel and V. M. Barragan, J. Power Sources 84, 70 (1999). https://doi.org/10.1016/S0378-7753(99)00302-X

    Article  CAS  Google Scholar 

  27. S. Wasmus and A. Küver, J. Electroanal. Chem. 461, 14 (1999). https://doi.org/10.1016/s0022-0728(98)00197-1

    Article  CAS  Google Scholar 

  28. A. Christen and J. T. Mueller, US Patent No. 6743538 B2 (2004).

  29. T. Tang, S. Heinke, A. Thuring, et al., Int. J. Hydrogen Energy 30, 1 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.236

    Article  CAS  Google Scholar 

  30. H. Meng and B. Ruan, Int. J. Energy Res. 35, 2 (2011). https://doi.org/10.1002/er.1730

    Article  CAS  Google Scholar 

  31. H. Meng, J. Power Sources 178, 141 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.035

    Article  CAS  Google Scholar 

  32. G. N. Voloshchenko, V. N. Fateev, and N. A. Ivanova, RF Patent No. 194638 U1 (2019)

  33. V. N. Fateev, G. N. Voloshchenko, and N. A. Ivanova, RF Patent No. 2722751 U1 (2020).

  34. D. D. Spasov, N. A. Ivanova, A. S. Pushkarev, et al., Catalysts 9, 1 (2019). https://doi.org/10.3390/catal9100803

    Article  CAS  Google Scholar 

  35. S. Sun, H. Yu, J. Hou, et al., J. Power Sources 177, 137 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.012

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-23030) and within the framework of scientific research at the NRC Kurchatov Institute (order no. 1808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zasypkina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voloshchenko, G.N., Zasypkina, A.A. & Spasov, D.D. Model Study of a Cold Start of a Power Plant Based on a Polymer Electrolyte Membrane Fuel Cells in the Conditions of Arctic Temperatures. Nanotechnol Russia 15, 326–332 (2020). https://doi.org/10.1134/S1995078020030155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020030155

Navigation