Skip to main content
Log in

Use of Carbon Nano Fibers in the Production of Metal Hydride Compacts

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Carbon nanomaterials are being actively implemented in various energy fields, including hydrogen. One of the main problems for the development and implementation of metal hydride technologies is the low thermal conductivity of fine powders of hydride-forming materials. This feature, given the rather high values of the heat of reaction of intermetallic compounds with hydrogen, leads to an increase in the cost of the design of reactors with metal hydrides and heat exchangers, which reduces the competitiveness of hydrogen-based technologies. One of the most promising ways of solving this problem today is the formation of compacts from powders of metal hydrides with additives that increase thermal conductivity by pressing. We investigated compacts based on intermetallic compounds AB5-type composition LaNi4.4Al0.3Fe0.3 prepared using various techniques, and a comparison of their properties with the free filling of this metal hydride was carried out. Carbon nanofibers and nickel-based foam were used as additives to improve the thermal conductivity of the compacts. The main methods for studying the properties of samples were the measurement of the absorption and desorption isotherms of hydrogen in the pressure-composition-temperature coordinates and the temperature inside the samples during their heating and interaction with hydrogen. The compacts showed a noticeable improvement in thermal conductivity, with a slight deterioration in hydrogen sorption properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. F. S. Tabarov, M. V. Astakhov, A. A. Klimont, A. T. Kalashnik, R. R. Galimzyanov and N. V. Isaeva, Nanotechnol. Russ. 14, 16 (2019). https://doi.org/10.21517/1992-7223-2019-1-2-13-18

    Article  CAS  Google Scholar 

  2. M. V. Lototskyy, I. Tolj, L. Pickering, et al., Prog. Nat. Sci. 27, 3 (2017). https://doi.org/10.1016/j.pnsc.2017.01.008

    Article  CAS  Google Scholar 

  3. P. Muthukumar, A. Kumar, N. Raju, et al., Int. J. Hydrogen Energy 43, 17753 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.157

    Article  CAS  Google Scholar 

  4. J. Colbe, J. Ares, J. Barale, et al., Int. J. Hydrogen Energy 44, 7780 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.104

    Article  CAS  Google Scholar 

  5. V. I. Borzenko, D. O. Dunikov, and S. P. Malyshenko, High Temp. 49, 249 (2011). https://doi.org/10.1134/S0018151X11010019

    Article  CAS  Google Scholar 

  6. S. S. Mohammadshahi, E. M. Gray, and C. J. Webb, Int. J. Hydrogen Energy 41, 3470 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.079

    Article  CAS  Google Scholar 

  7. E. S. Kikkinides, M. C. Georgiadis, and A. K. Stubos, Energy 31, 2426 (2006). https://doi.org/10.1016/j.energy.2005.10.036

    Article  CAS  Google Scholar 

  8. V. I. Borzenko, I. A. Romanov, D. O. Dunikov, et al., Int. J. Hydrogen Energy 44, 6086 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.052

    Article  CAS  Google Scholar 

  9. P. Rizzi, E. Pinatel, C. Luetto, et al., J. Alloys Compd. 645, S338 (2015). https://doi.org/10.1016/j.jallcom.2014.12.145

    Article  CAS  Google Scholar 

  10. A. Chaise, P. de Rango, P. Marty, et al., Int. J. Hydrogen Energy 34, 8589 (2009). https://doi.org/10.1016/j.ijhydene.2009.07.112

    Article  CAS  Google Scholar 

  11. A. Khelwal, F. Agresti, G. Capurso, et al., Int. J. Hydrogen Energy 35, 3565 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.076

    Article  CAS  Google Scholar 

  12. J. Jepsen, C. Milanese, A. Girella, et al., Int. J. Hydrogen Energy 38, 8357 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.090

    Article  CAS  Google Scholar 

Download references

Funding

The study was financed by the Russian Science Foundation (grant no. 17-19-01738).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Romanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, I.A., Borzenko, V.I. & Kazakov, A.N. Use of Carbon Nano Fibers in the Production of Metal Hydride Compacts. Nanotechnol Russia 15, 314–318 (2020). https://doi.org/10.1134/S1995078020030118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020030118

Navigation