Skip to main content
Log in

Nanoparticles Manifesting Antibacterial Effects: Properties, Production, Mechanism of Action, and Applications

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The emergence of new infectious diseases and the rapid development of drug resistance in pathogenic bacteria and fungi are a serious problem of modern medicine; therefore, a relevant issue is to develop novel methods of counteraction and detection of antimicrobial agents among natural and inorganic substances and the development of diagnostic, prophylactic, and therapeutic drugs. In the present work, we have considered gold, magnesium oxide, copper oxide, alumina, and zinc oxide nanoparticles that have proved to be potential antibacterial and antifungal agents, as well as the methods of their production, physicochemical properties, mechanisms of action, and applications. Examples of toxicity of nanoparticles for the following microorganisms are given: Proteus spp., Salmonella spp., Еscherichia coli, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, etc. It is a promising trend to use these nanoparticles as antitumor agents and antifungal and antimicrobial drugs against pathogenic and drug-resistant microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Gajjar, B. Pettee, D. W. Britt, et al., J. Biol. Eng. 3, 9 (2009). https://doi.org/10.1186/1754-1611-3-9

    Article  CAS  Google Scholar 

  2. W. J. Parak, D. Gerion, T. Pellegrino, et al., Nanotecnology 14 (7), 15 (2003). https://doi.org/10.1088/0957-4484/14/7/201

    Article  Google Scholar 

  3. L. N. Vashchenko, I. R. Dashkova, E. E. Kechedzhieva, and S. M. Babieva, Sovrem. Onkol. 17 (4), 45 (2015).

    Google Scholar 

  4. M. D. Sychov, I. L. Kiselev, S. P. Dronov, et al., Vestn. Eksp. Klin. Khir. 8 (1), 82 (2015).

    Google Scholar 

  5. L. Volevach and A. Tur’yanov, Vrach., No. 4, 70 (2005).

  6. N. N. Karyakin, E. E. Malyshev, R. O. Gorbatov, and D. K. Rotich, Travmatol. Ortoped. Ross. 23 (3), 110 (2017). https://doi.org/10.21823/2311-2905-2017-23-3-110-118

    Article  Google Scholar 

  7. M. V. Kozlova, A. M. Panin, and A. M. Mkrtumyan, Klin. Gerontol. 14 (2), 30 (2008).

    Google Scholar 

  8. T. V. Akaeva, L. M. Kudaeva, I. A. Minenko, and K. N. Mkhitaryan, Vestn. Vosstan. Med. 36 (2), 35 (2010).

    Google Scholar 

  9. V. D. Zavadovskaya, V. P. Popov, E. G. Grigor’ev, et al., Genii Ortoped., No. 1, 79 (2011).

  10. I. B. Gan’shin, Eksp. Klin. Dermatokosmetol., No. 5, 14 (2006).

  11. P. V. Ishmurzin, “Changes in the aesthetic parameters of the face in patients with transversal occlusion anomalies,” Cand. Sci. (Med. Sci.) Dissertation (Perm’, 2005).

  12. S. E. Mamchur, A. I. Oferkin, A. I. Petsh, et al., Vestn. Aritmol., No. 61, 11 (2010).

  13. S. A. Rumyantseva, V. V. Afanas’ev, Yu. V. Kuz’mina, and E. V. Silina, Consil. Med. 12 (9), 35 (2010).

    Google Scholar 

  14. M. Kolar, K. Urbanek, and T. Latal, Int. J. Antimicrob. Agents 17, 357 (2001). https://doi.org/10.1016/s0924-8579(01)00317-x

    Article  CAS  Google Scholar 

  15. L. S. Novikov and E. N. Voronina, Prospects for the Use of Nanomaterials in Space Technology (Universit. Kniga, Moscow, 2008) [in Russian].

    Google Scholar 

  16. A. A. Dmitrievskaya, Byull. Med. Internet-Konf. 7, 876 (2017).

    Google Scholar 

  17. I. V. Babushkina, G. V. Korshunov, D. M. Puchin’yan, and V. B. Borodulin, Vestn. RUDN, Ser. Med., No. 7, 87 (2008).

  18. A. C. Samia, S. Dayal, and C. Burda, Photochem. Photobiol. 82, 617 (2006). https://doi.org/10.1562/2005-05-11-IR-525

    Article  CAS  Google Scholar 

  19. O. V. Mosin, 2008. http://www.nanonewsnet.ru/blog/nikst/fiziologicheskoe-vozdeistvie-nanochastits-zolota-na-organizm-cheloveka.

  20. M. C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004). https://doi.org/10.1021/cr030698+

    Article  CAS  Google Scholar 

  21. http://lifebio.wiki/nanochastitsy_zolota. Accessed 2015.

  22. G. L. Burygin, B. N. Khlebtsov, A. N. Shantrokha, et al., Nanoscale Res. Lett. 4, 794 (2009). https://doi.org/10.1007/s11671-009-9316-8

    Article  CAS  Google Scholar 

  23. H. Gu, P. L. Ho, E. Tong, et al., Nano Lett. 3, 1261 (2003). https://doi.org/10.1021/nl034396z

    Article  CAS  Google Scholar 

  24. N. A. Grace and K. Pandian, Eng. Asp. 297, 63 (2007). https://doi.org/10.1016/j.colsurfa.2006.10.024

    Article  CAS  Google Scholar 

  25. B. Saha, J. Bhattacharya, A. Mukherjee, et al., Nanoscale Res. Lett. 2, 614 (2007). https://doi.org/10.1007/s11671-007-9104-2

    Article  CAS  Google Scholar 

  26. W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, Chem. Commun. 32, 4853 (2009). https://doi.org/10.1039/b907274h

    Article  CAS  Google Scholar 

  27. D. Pissuwan, C. H. Cortie, S. M. Valenzuela, and M. B. Cortie, Trends Biotechnol. 28, 207 (2009). https://doi.org/10.1016/j.tibtech.2009.12.004

    Article  CAS  Google Scholar 

  28. N. V. Zaitseva, M. A. Zemlyanova, M. S. Stepankov, and A. M. Ignatova, Ekol. Cheloveka, No. 2, 39 (2019). https://doi.org/10.33396/1728-0869-2019-2-39-44

  29. K. J. Klabunde, J. Stark, O. Koper, et al., J. Phys. Chem. 100, 12142 (1996). https://doi.org/10.1021/jp960224x

    Article  CAS  Google Scholar 

  30. L. Huang, D.-Q. Li, Y.-J. Lin, et al., J. Inorg. Biochem. 99, 986 (2005). https://doi.org/10.1016/j.jinorgbio.2004.12.022

    Article  CAS  Google Scholar 

  31. R. Richards, W. Li, S. Decker, et al., J. Am. Chem. Soc. 122, 4921 (2000). https://doi.org/10.1021/ja994383g

    Article  CAS  Google Scholar 

  32. D. P. Chattopadhyay and B. H. Patel, Int. J. Pure Appl. Sci. Technol. 9, 1 (2012).

    CAS  Google Scholar 

  33. G. Yang, Z. Zhang, S. Zhang, et al., Mater. Res. Bull. 48, 1716 (2013). https://doi.org/10.1016/j.materresbull.2013.01.025

    Article  CAS  Google Scholar 

  34. H. Zhu, C. Zhang, and Y. Yin, Nanotechnology 16, 3079 (2005). https://doi.org/10.1088/0957-4484/16/12/059

    Article  CAS  Google Scholar 

  35. Y. Wang, P. Chen, and M. Liu, Nanotechnology 17, 6000 (2006). https://doi.org/10.1088/0957-4484/17/24/016

    Article  CAS  Google Scholar 

  36. A. M. Studer, L. K. Limbach, L. van Duc, et al., Toxicol. Lett. 197, 169 (2010). https://doi.org/10.1016/j.toxlet.2010.05.012

    Article  CAS  Google Scholar 

  37. A. K. Chatterjee, R. K. Sarkar, A. P. Chattopadhyay, et al., Nanotechnology 23, 1 (2012). https://doi.org/10.1088/0957-4484/23/8/085103

    Article  CAS  Google Scholar 

  38. J. Ramyadevi, K. Jeyasubramanian, A. Marikani, et al., Mater. Lett. 71, 114 (2012). https://doi.org/10.1016/j.matlet.2011.12.055

    Article  CAS  Google Scholar 

  39. O. V. Zakharova, A. A. Gusev, Yu. V. Altabaeva, and S. Yu. Perova, Nanotechnol. Russ. 13, 173 (2018).

    Article  CAS  Google Scholar 

  40. S. N. Kozlov, V. B. Nikolaev, E. Yu. Markov, et al., Zh. Mikrobiol. Epidemiol. Immunobiol., No. 2, 3 (2013).

  41. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji, Acta Biomater. 4, 707 (2008). https://doi.org/10.1016/j.actbio.2007.11.006

    Article  CAS  Google Scholar 

  42. Yu. A. Ippolitov, E. G. Borisova, S. N. Pankova, et al., Fundam. Issled., No. 9, 408 (2011).

  43. Yu. A. Kuzma-Kichta, N. S. Ivanov, D. S. Kiselev, and A. V. Lavrikov, “Method for obtaining nanoparticles of aluminum oxide,” State Registration Certificate of Computer Programs No. 2017140229 (2017).

  44. M. Sadiq, B. Chowdhury, N. Chandrasekaran, and A. Mukherjee, Nanomedicine 5, 282 (2009). https://doi.org/10.1016/j.nano.2009.01.002

    Article  CAS  Google Scholar 

  45. B. Li and B. E. Logan, Colloids Surf., B 36 (2), 81 (2004). https://doi.org/10.1016/j.colsurfb.2004.05.006

    Article  CAS  Google Scholar 

  46. G. Mohammad, V. K. Mishra, and H. P. Pandey, Dig. J. Nanomater. Biostruct. 3, 159 (2008).

    Google Scholar 

  47. W. Jiang, H. Mashayekhi, and B. Xing, Environ. Pollut. 157, 1619 (2009). https://doi.org/10.1016/j.envpol.2008.12.025

    Article  CAS  Google Scholar 

  48. L. L. Zhang, Y. H. Jiang, Y. L. Ding, et al., J. Nanopart. Res. 9, 479 (2007). https://doi.org/10.1007/s11051-006-9150-1

    Article  CAS  Google Scholar 

  49. Y. Liu, L. He, A. Mustapha, et al., J. Appl. Microbiol. 107, 1193 (2009). https://doi.org/10.1111/j.1365-2672.2009.04303.x

    Article  CAS  Google Scholar 

  50. A. A. Dmitrievskaya, Byull. Med. Internet-Konf., No. 7, 876 (2017).

  51. O. Yamamoto, Int. J. Inorg. Mater. 3, 643 (2001). https://doi.org/10.1016/S1466-6049(01)00197-0

    Article  CAS  Google Scholar 

  52. R. Brayner, R. Ferrari-Iliou, N. Brivois, et al., Nano Lett. 6, 866 (2006). https://doi.org/10.1021/nl052326h

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Matsakova.

Additional information

Translated by E.V. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsakova, E.G., Simakova, D.I. Nanoparticles Manifesting Antibacterial Effects: Properties, Production, Mechanism of Action, and Applications. Nanotechnol Russia 15, 236–240 (2020). https://doi.org/10.1134/S1995078020020159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020020159

Navigation