Skip to main content
Log in

The Effect of Carbon Nanomaterials on the Toxicity Indices of Cyclophosphamide under Combined Administration

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Carbon nanomaterials (CNMs) and single- and multiwalled carbon nanotubes and fullerene derivatives are considered as promising agents for the delivery of pharmacological agents to target organs in anticancer therapy and theranostics. Cytostatic cyclophosphamide (CP) is one of the chemotherapeutic drugs the targeted delivery of which is possible by CNMs. However, due to the presence of its own toxic effect in various CNMs, the question about their possible effect on the general toxic and immunotoxic effect of CP when administered together arises. The combined effect of CP and CNMs, i.e., multiwalled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), and polyhydroxylated fullerenol (PHF60), administered orally daily at a dose of 0.1 mg/kg of body weight, was studied in Wistar rats. In two experiments lasting 16 and 35 days with different scenarios of CP-induced immunosuppression, the lethality and integral parameters were assessed; the contents of erythrocytes and leukocytes; the biochemical parameters; the levels of cytokines, chemokines, and growth factors; and the activity of glutathione peroxidase-I of erythrocytes were studied in the blood. The concentration of selenium and the excretion of creatinine and 8-oxo-2-deoxyguanosine were studied in the urine. The level of reduced glutathione was studied in the liver homogenate. In the first experiment, the consumption of both MWCNTs and SWCNTs led to an almost twofold decrease in lethality caused by the introduction of CP. In the second experiment, a twofold decrease in the lethality was noted only for SWCNTs; nevertheless, MWCNTs and PHF60 also had a positive effect on the survival of animals. Consumption of CNMs did not have a significant effect on the biochemical parameters, the state of the erythropoiesis system, the weight of the thymus and spleen, or the levels of key regulatory molecules impaired due to CP treatment. At the same time, MWCNTs, SWCNTs, and PHF60 are able to reduce a number of manifestations of the CP immunotoxic effect, including the lethality, lymphopenia, and impaired balance of cytokines and chemokines/growth factors: IL-4, IL-13, IL-17A, IFN-γ, IL-18, GM-CSF, GRO-KC, IL-12p70, IL-1β, IL-7, TNF-α, and VEGF. Thus, MWCNTs and SWCNTs, when administered together with CP, have a paradoxical effect consisting in the partial cancellation of the disturbances caused by it, which can be explained by the known ability of CNTs to enhance the mobilization, migration, and adhesion of blood cells and to trigger immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Bianco, K. Kostarelos, and M. Prato, Curr. Opin. Chem. Biol. 9, 674 (2005). https://doi.org/10.1016/j.cbpa.2005.10.005

    Article  CAS  Google Scholar 

  2. S. K. S. Kushwaha, S. Ghoshal, A. K. Rai, and S. Singh, Braz. J. Pharm. Sci. 49, 629 (2013). https://doi.org/10.1590/S1984-82502013000400002

    Article  CAS  Google Scholar 

  3. L. M. Fatkhutdinova, T. O. Khaliullin, O. L. Vasil’eva, et al., Toxicol. Appl. Pharmacol. 299, 125 (2016). https://doi.org/10.1016/j.taap.2016.02.016

    Article  CAS  Google Scholar 

  4. K. Aschberger, H. J. Johnston, V. Stone, et al., Crit. Rev. Toxicol. 40, 759 (2010). https://doi.org/10.3109/10408444.2010.506638

    Article  CAS  Google Scholar 

  5. M. van der Zande, R. Junker, X. F. Walboomers, and J. A. Jansen, Tissue Eng. Part B, Rev. 17, 57 (2011). https://doi.org/10.1089/ten.TEB.2010.0472

    Article  CAS  Google Scholar 

  6. M. Ahlmann and G. Hempel, Cancer Chemother. Pharmacol. 78, 661 (2016). https://doi.org/10.1007/s00280-016-3152-1

    Article  CAS  Google Scholar 

  7. K. A. Teles, P. Medeiros-Souza, F. A. C. Lima, et al., Rev. Bras. Reumatol. Engl. Ed. 57, 596 (2017). https://doi.org/10.1016/j.rbre.2016.09.008

    Article  Google Scholar 

  8. M. H. A. Azqhandi, B. V. Farahani, and N. Dehghani, Mater. Sci. Eng. C 79, 841 (2017). https://doi.org/10.1016/j.msec.2017.05.089

    Article  CAS  Google Scholar 

  9. V. A. Shipelin, A. A. Shumakova, A. G. Masyutin, et al., Nanotechnol. Russ. 12, 559 (2017). https://doi.org/10.1134/S199507801705010X

    Article  CAS  Google Scholar 

  10. V. A. Shipelin, N. A. Riger, E. N. Trushina, et al., Gigiena Canit. 97, 1114 (2018). https://doi.org/10.18821/0016-9900-2018-97-11-1114-21

    Article  CAS  Google Scholar 

  11. E. A. Lebedinskaya, L. F. Loseva, O. V. Lebedinskaya, et al., Fundam. Issled., No. 10, 78 (2008).

  12. A. V. Razygraev, Klin.-Lab. Konsil., No. 4, 19 (2004).

  13. N. A. Golubkina, Zh. Anal. Khim. 50, 492 (1995).

    Google Scholar 

  14. B. S. de Martinis and M. L. P. Bianchi, Pharmacol. Res. 46, 129 (2002). https://doi.org/10.1016/s1043-6618(02)00080-4

    Article  Google Scholar 

  15. A. M. El-Sebaey, F. M. Abdelhamid, and O. A. Abdalla, Environ. Sci. Pollut. Res. Int. 26, 15559 (2019). https://doi.org/10.1007/s11356-019-04993-7

    Article  Google Scholar 

  16. L. Galluzzi, A. Buque, O. Kepp, et al., Nat. Rev. Immunol. 17, 97 (2017). https://doi.org/10.1038/nri.2016.107

    Article  CAS  Google Scholar 

  17. C. Buccione, A. Fragale, F. Polverino, et al., Int. J. Cancer 142, 976 (2018). https://doi.org/10.1002/ijc.31083

    Article  CAS  Google Scholar 

  18. L. Bracci, F. Moschella, P. Sestili, et al., Clin. Cancer Res. 13, 644 (2007). https://doi.org/10.1158/1078-0432.CCR-06-1209

    Article  CAS  Google Scholar 

  19. F. Moschella, M. Valentini, E. Arico, et al., Cancer Res. 71, 3528 (2011). https://doi.org/10.1158/0008-5472.CAN-10-4523

    Article  CAS  Google Scholar 

  20. F. Moschella, G. F. Torelli, M. Valentini, et al., Clin. Cancer Res. 19, 4249 (2013). https://doi.org/10.1158/1078-0432.CCR-12-3666

    Article  CAS  Google Scholar 

  21. L. A. Mitchell, J. Gao, R. V. Wal, et al., Toxicol. Sci. 100, 203 (2007). https://doi.org/10.1093/toxsci/kfm196

    Article  CAS  Google Scholar 

  22. S. Y. Madani, A. Mandel, and A. M. Seifalian, Nano Rev. 4, 10 (2013). https://doi.org/10.3402/nano.v4i0.21521

    Article  CAS  Google Scholar 

  23. S. Hussain, S. Sangtian, S. Anderson, et al., Part. Fibre Toxicol. 11, 28 (2014). https://doi.org/10.1186/1743-8977-11-28

    Article  CAS  Google Scholar 

  24. L. M. Fatkhutdinova, T. O. Khaliullin, R. R. Zalyalov, et al., Nanotechnol. Russ. 11, 110 (2016). https://doi.org/10.1134/S1995078016010055

    Article  CAS  Google Scholar 

  25. L. A. Mitchell, F. T. Lauer, S. W. Burchiel, and J. D. Mcdonald, Nat. Nanotechnol. 4, 451 (2009). https://doi.org/10.1038/nnano.2009.151

    Article  CAS  Google Scholar 

  26. B. C. Sayers, A. J. Taylor, E. E. Glista-Baker, et al., Am. J. Respir. Cell. Mol. Biol. 49, 525 (2013). https://doi.org/10.1165/rcmb.2013-0019OC

    Article  CAS  Google Scholar 

  27. L. Xiao, H. Takada, K. Maeda, et al., Biomed. Pharmacother. 59, 351 (2005). https://doi.org/10.1016/j.biopha.2005.02.004

    Article  CAS  Google Scholar 

  28. I. V. Gmoshinski, A. A. Shumakova, V. A. Shipelin, et al., Nanotechnol. Russ. 14, 149 (2019). https://doi.org/10.1134/S1995078019020071

    Article  CAS  Google Scholar 

  29. E. W. Choi, M. Lee, J. W. Song, et al., Sci. Rep. 6, 38237 (2016). https://doi.org/10.1038/srep38237

    Article  CAS  Google Scholar 

  30. A. Yamaguchi, T. Fujitani, K. Ohyama, et al., J. Toxicol. Sci. 37, 177 (2012). https://doi.org/10.2131/jts.37.177

    Article  CAS  Google Scholar 

  31. Q. Liu, L. Qiao, P. Hu, et al., J. Balkan Union Oncol. 22, 21 (2017).

    Google Scholar 

  32. Van der L. Weyden, J. K. White, D. J. Adams, and D. W. Logan, Genome Biol. 12, 224 (2011). https://doi.org/10.1186/gb-2011-12-6-224

    Article  Google Scholar 

  33. M. G. Netea, C. Wijmenga, and L. A. O’Neill, Nat. Immunol. 13, 535 (2012). https://doi.org/10.1038/ni.2284

    Article  CAS  Google Scholar 

  34. K. Matsunaga, T. Tahara, H. Shiroeda, et al., Mol. Med. Rep. 9, 28 (2014). https://doi.org/10.3892/mmr.2013.1769

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Selifanov and Kh.S. Soto for the results of biochemical analyses and to A.G. Masyutin for conducting electron microscopic studies of nanomaterials.

Funding

This work was supported by the funds of a subsidy for the implementation of a State Assignment within the Program of Basic Scientific Research (topic of the Ministry of Education and Science of the Russian Federation no. 0529-2014-0053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Gmoshinski.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. Studies in animals were performed in accordance with the following Russian and international requirements of good laboratory practice: Order of the Ministry of Health of the Russian Federation no. 199n dated April, 1, 2016, “On Approval of the Rules of Good Laboratory Practice.” Guide for the care and use of laboratory animals. Eighth Edition/Committee for Updating the Guide for the Care and Use of Laboratory Animals; Institute for Laboratory Animal Research (ILAR); Division on Earth and Life Studies (DELS); National Research Council of the National Academies. Washington: The National Academies Press, 2011.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gmoshinski, I.V., Riger, N.A., Shipelin, V.A. et al. The Effect of Carbon Nanomaterials on the Toxicity Indices of Cyclophosphamide under Combined Administration. Nanotechnol Russia 15, 218–229 (2020). https://doi.org/10.1134/S1995078020020093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020020093

Navigation