Skip to main content
Log in

ARC DISCHARGE SYNTHESIS OF MATERIAL BASED ON GRAPHITE AND MOLYBDENUM CARBIDE

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The experimental study results of synthesizing molybdenum carbide in a plasma of a direct-current arc discharge by the vacuum-free method are presented. The influence of the current amplitude of the discharge circuit on the phase composition of the synthesis product is established. The synthesis product contains a microdimensional component and a nanosized one. The scanning electron microscopy (SEM) and X-ray diffractometry methods identified carbon fibers with a graphite structure and modified fibers containing graphite and molybdenum carbide as part of the microsized component. The nanoscale component contains clusters of particles that are a graphite matrix in which molybdenum carbide particles are immersed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Xing, Ya. Li, S. Guo, et al., Electrochim. Acta 298, 305 (2018). https://doi.org/10.1016/electacta.2018.12.091

    Article  Google Scholar 

  2. Yu. Maa, G. Guana, X. Haoc, et al., Renewable Sustainable Energy Rev. 75, 1101 (2017). https://doi.org/10.1016/j.rser.2016.11.092

    Article  CAS  Google Scholar 

  3. M. Madrigal-Camacho, M. Camacho-Lopez, A. R. Vil-chis-Nestor, et al., Diamond Rel. Mater. 82, 63 (2018). https://doi.org/10.1016/j.diamond.2017.12.019

    Article  CAS  Google Scholar 

  4. Y. Zou, D. Ma, D. Sun, et al., Appl. Surf. Sci. 473, 91 (2019). https://doi.org/10.1016/j.apsusc.2018.12.102

    Article  CAS  Google Scholar 

  5. Y. J. Oh, J. H. Kim, Yu. C. Kang, et al., Chem. Eng. J. 351, 886 (2018). https://doi.org/10.1016/j.cej.2018.06.166

    Article  CAS  Google Scholar 

  6. S. Yang, J. Zhao, S. Tricard, et al., Anal. Chim. Acta 1094, 80 (2020). https://doi.org/10.1016/j.aca.2019.09.077

    Article  CAS  Google Scholar 

  7. Z. Hu, J. Huang, Y. Luo, et al., Electrochim. Acta 319, 293 (2019). https://doi.org/10.1016/j.electacta.2019.06.178

    Article  CAS  Google Scholar 

  8. A. Dubrovskiy, O. Makarova, and S. Kuznetsov, Coatings 442, 11 (2018). https://doi.org/10.3390/coatings8120442

    Article  CAS  Google Scholar 

  9. O. N. Baklanova, A. V. Vasilevich, A. V. Lavrenov, et al., J. Alloys Compd. 793, 715 (2019). https://doi.org/10.1016/j.jallcom.2019.04.228

    Article  CAS  Google Scholar 

  10. R. A. Mir and O. P. Pandey, J. Cleaner Product. 218, 644 (2019). https://doi.org/10.1016/j.jclepro.2019.02.004

    Article  CAS  Google Scholar 

  11. W. P. Mounfield III, B. Huang, B. Cai, et al., Mater. Lett. 261 (2020). https://doi.org/10.1016/j.matlet.2019.126987

  12. R. Li, A. Shahbazi, B. Zhang, et al., Appl. Catal. A 528, 123 (2016). https://doi.org/10.1016/j.apcata.2016.09.016

    Article  CAS  Google Scholar 

  13. Yu. A. Timoshina, A. V. Trofimov, I. S. Miftakhov, and E. F. Voznesenskii, Nanotechnol. Russ. 13, 561 (2018).

    Article  CAS  Google Scholar 

  14. E. A. Bogoslov, M. P. Danilaev, S. V. Drobyshev, V. A. Kuklin and M. S. Pudovkin, Nanotechnol. Russ. 14, 98 (2019). https://doi.org/10.21517/1992-7223-2019-3-4-10-16

    Article  CAS  Google Scholar 

  15. Y. Yosida and I. Oguro, Phys. C (Amsterdam, Neth.) 442, 97 (2006). https://doi.org/10.1016/j.physc.2006.04.092

  16. E. Saito, T. Matsumoto, K. Nishikubo, et al., J. Cryst. Growth 172, 163 (1997). https://doi.org/10.1016/S0022-0248(96)00709-9

    Article  CAS  Google Scholar 

  17. J. Zhao, Ya. Su, Zh. Yang, et al., Carbon 58, 92 (2013). https://doi.org/10.1016/j.carbon.2013.02.036

    Article  CAS  Google Scholar 

  18. Y. Su, H. Wei, T. Li, et al., Mater. Res. Bull. 50, 23 (2014). https://doi.org/10.1016/j.materresbull.2013.10.013

    Article  CAS  Google Scholar 

  19. R. Joshi, J. Engstler, Pr. Haridoss, et al., Diamond Rel. Mater. 17, 913 (2008). https://doi.org/10.1016/j.diamond.2008.01.004

    Article  CAS  Google Scholar 

  20. A. Ya. Pak, Tech. Phys. Lett. 45, 866 (2019). https://doi.org/10.1134/S1063785019090098

    Article  CAS  Google Scholar 

  21. J. Guardia-Valenzuela, A. Bertarelli, F. Carra, et al., Carbon 135, 72 (2018). https://doi.org/10.1016/j.carbon.2018.04.010

    Article  CAS  Google Scholar 

  22. B. Predel, C-Mo (Carbon-Molybdenum) Landolt-Börnstein—Group IV Physical Chemistry (Springer, Berlin, Heidelberg, 1992), Vol. 5B. https://doi.org/10.1007/10040476_643

  23. N. Arora and N. N. Sharma, Diamond Rel. Mater. 50, 135 (2014). https://doi.org/10.1016/j.diamond.2014.10.001

    Article  CAS  Google Scholar 

  24. K. Xia, J. Guo, C. Xuan, et al., Chin. Chem. Lett. 30, 192 (2019). https://doi.org/10.1016/j.cclet.2018.05.009

    Article  CAS  Google Scholar 

  25. H. Wei, Q. Xi, X. Chen, D. Guo, et al., Adv. Sci. 5, 1700733 (2018). https://doi.org/10.1002/advs.201700733

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from the President of the Russian Federation, no. MK-633.2019.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Pak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pak, A.Y., Kononenko, P.N. ARC DISCHARGE SYNTHESIS OF MATERIAL BASED ON GRAPHITE AND MOLYBDENUM CARBIDE. Nanotechnol Russia 14, 551–556 (2019). https://doi.org/10.1134/S1995078019060132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019060132

Navigation