Skip to main content
Log in

High Photocatalytic Activity Nanomaterials Based on Titanium Dioxide

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract—X-ray diffraction, optical spectroscopy, and electron paramagnetic resonance (EPR) have been used to study microspheres and nanoheterostructures based on titanium dioxide synthesized by aerosol pyrolysis and sol–gel methods. All test samples are characterized by a large specific surface area (about 100 m2/g of substance). It was established that the main type of radicals in the resulting structures are N, NO, as well as Ti3+, Mo5+, V4+, and W5+ centers. Microspheres and nanoheterostructures consisting of several metal oxides have high photocatalytic activity in the visible spectrum and the ability to accumulate photogenerated charge carriers. As a result, catalytic reactions in the samples continue even after illumination is turned off. A correlation was found between the rate of photocatalysis and the radical concentration in the studied structures. The results can be used to develop new-generation energy-efficient catalytic devices based on nanocrystalline titanium oxide, which operate in the visible range and do not require continuous illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. B. O’Regan and M. Gratzel, Nature (London, U.K.) 335, 737 (1991).

    Article  Google Scholar 

  2. O. Oluwafunmilola and M. Maroto-Valer, J. Photochem. Photobiol., C 24, 16 (2015).

  3. T. V. Sviridova, L. Yu. Sadovskaya, E. A. Konstantinova, et al., Catal. Lett. 149, 1147 (2019).

    Article  CAS  Google Scholar 

  4. K. Sasan and F. Zuo, Nanoscale 7, 13369 (2015).

    Article  CAS  Google Scholar 

  5. X. Chen and S. Mao, Chem. Rev. 107, 2891 (2007).

    Article  CAS  Google Scholar 

  6. J. Schneider and M. Matsuoka, Chem. Rev. 114, 9919 (2014).

    Article  CAS  Google Scholar 

  7. A. Tarasov, G. Trusov, A. A. Minnekhanov, et al., J. Mater. Chem. A 2, 3102 (2014).

    Article  CAS  Google Scholar 

  8. T. V. Sviridova, L. Yu. Sadovskaya, E. M. Shchukina, et al., J. Photochem. Photobiol., A 327, 44 (2016).

    Article  CAS  Google Scholar 

  9. E. A. Konstantinova, A. A. Minnekhanov, A. I. Kokorin, et al., J. Phys. Chem. C 122, 10248 (2018).

    Article  CAS  Google Scholar 

  10. A. Tarasov, Hu. Zhi-Yi, M. Meledina, et al., J. Phys. Chem. C 121, 4443 (2017).

    Article  CAS  Google Scholar 

  11. A. Mills and S. Hunte, J. Photochem. Photobiol., A 108, 1 (1997).

    Article  CAS  Google Scholar 

  12. N. Serpone and E. Pelizzetti, Photocatalysis: Fundamentals and Applications (Wiley, New York, 1989).

    Google Scholar 

  13. M. R. Hoffmann, S. T. Martin, W. Choi, et al., Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  14. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol., C 1, 1 (2000).

  15. A. V. Rupa, D. Divakar, and T. Sivakumar, Catal. Lett. 132, 259 (2009).

    Article  CAS  Google Scholar 

  16. R. Asahi, T. Morikawa, T. Ohwaki, et al., Science (Washington, DC, U. S.) 293, 269 (2001).

    Article  CAS  Google Scholar 

  17. Z. Barbieriková, E. Pližingrová, M. Motlochová, et al., Appl. Catal. B: Environ. 232, 397 (2018).

    Article  Google Scholar 

  18. A. A. Minnekhanov, N. T. Le, E. A. Konstantinova, et al., Appl. Magn. Reson. 48, 335 (2017).

    Article  CAS  Google Scholar 

  19. N. S. Miyamoto, R. Miyamoto, E. Giamello, et al., Res. Chem. Intermed. 44, 4577 (2018).

    Article  Google Scholar 

  20. S. Stoll and A. Schweiger, J. Magn. Reson. 178, 42 (2006).

    Article  CAS  Google Scholar 

  21. W. Wedland and H. Hecht, Reflectance Spectroscopy (Interscience, New York, 1966).

    Google Scholar 

  22. A. I. Kokorin and D. W. Bahnemann, Chemical Physics of Nanostructured Semicontuctors (VSP-Brill Academic, Utrecht, Boston, 2003), p. 203.

  23. S. Livraghi, A. M. Czoska, M. C. Paganini, et al., J. Solid State Chem. 182, 160 (2009).

    Article  CAS  Google Scholar 

  24. A. A. Minnekhanov, D. M. Deygen, E. A. Konstantinova, et al., Nanoscale Res. Lett. 7, 333 (2012).

    Article  Google Scholar 

  25. P. C. Gravelle, F. Juillet, P. Mériaudeau, et al., Chem. Soc. Faraday Discuss. 52, 140 (1971).

    Article  Google Scholar 

  26. M. Occhiuzzi, D. Cordischi, D. Gazzoli, et al., General 269, 169 (2004).

    Article  CAS  Google Scholar 

  27. L. Lietti, I. Nova, G. Ramis, et al., J. Catal. 187, 419 (1999).

    Article  CAS  Google Scholar 

  28. R. G. Centi, E. Giamello, D. Pinelli, et al., J. Catal. 130, 220 (1991).

    Article  CAS  Google Scholar 

  29. K. I. Zamaraev, Yu. N. Molin, and K. M. Salikhov, Spin Exchange (Nauka, Novosibirsk, 1977) [in Russian].

    Google Scholar 

  30. N. V. Borisova and E. P. Surovoi, “Laws of nanosize molybdenum(VI) oxide layers optical properties change as a result of heat treatment,” Bull. Tomsk. Polytech. Univ. 310 (3), 68 (2007).

    Google Scholar 

  31. A. L. Shkol’nik, “Optical properties of MoO3,” Izv. Akad. Nauk SSSR, Ser. Fiz. 31, 2030 (1967).

    Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 18-29-23051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Konstantinova.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinova, E.A., Kushnikov, M.P., Zaitsev, V.B. et al. High Photocatalytic Activity Nanomaterials Based on Titanium Dioxide. Nanotechnol Russia 14, 190–196 (2019). https://doi.org/10.1134/S1995078019030078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019030078

Navigation