Skip to main content
Log in

CERAMIC COMPOSITE BASED ON ZIRCONIA REINFORCED BY SINGLE-WALLED CARBON NANOTUBES

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The effect of the relative content of single-walled carbon nanotubes (SWCNTs) on the compaction, phase composition, microstructure, and mechanical properties of composites based on yttria-stabilized zirconia obtained via spark plasma sintering is studied. We found that a substantial increase in the relative density from 98.26 to 99.98% is observed in the composites containing 0.1 and 0.5 wt % SWCNT. It is established that SWCNTs partially limit the monoclinic–tetragonal transition occurring during high-temperature treatment of zirconia. The fracture toughness of the composite containing 1 wt % SWCNT increases by 38% compared to ceramics without additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. V. Hughes and C. R. Chambers, “Manufacture of carbon filaments,” US Patent No. 405480 (1889).

  2. P. Schutzenberger and L. Schutzenberger, “Sur quelques faits relatifs l’histoire du carbone,” Acad. Sci. Paris 111, 774 (1890).

    Google Scholar 

  3. L. V. Radushkevich and V. M. Luk’yanovich, “On the structure of carbon formed during the thermal decomposition of carbon monoxide on an iron contact,” Zh. Fiz. Khim. 26, 88 (1952).

    CAS  Google Scholar 

  4. S. Iijima, “Helical microtubules of graphitic carbon,” Nature (London, U.K.) 354, 56 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  5. S. S. Samal and S. Bal, “Carbon nanotube reinforced ceramic matrix composite—a review,” J. Min. Mater. Char. Eng. 7, 4236 (2008). https://doi.org/10.4236/jmmce.2008.74028

    Article  Google Scholar 

  6. A. Peigney, C. H. Laurent, E. Flahaut, and A. Rousset, “Carbon nanotubes in novel ceramic matrix nanocomposites,” Ceram. Int. 26, 677 (2000). https://doi.org/10.1016/S0272-8842(00)00004-3

    Article  CAS  Google Scholar 

  7. M. Yu, O. Lourie, M. J. Dyer, et al., “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science (Washington, DC, U. S.) 287, 1126 (2000). https://doi.org/10.1126/science.287.5453.637

    Article  Google Scholar 

  8. M. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett. 84, 5552 (2000). https://doi.org/10.1103/PhysRevLett.84.5552

    Article  CAS  Google Scholar 

  9. A. Thess, R. Lee, P. Nikolaev, et al., “Crystalline ropes of metallic carbon nanotubes,” Science (Washington, DC, U. S.) 273, 483 (1996). https://doi.org/10.1126/science.273.5274.483

    Article  CAS  Google Scholar 

  10. Y. Ando, X. Zhao, H. Shimoyama, et al., “Physical properties of multiwalled carbon nanotubes,” Int. J. Inorg. Mater. 1, 77 (1999). https://doi.org/10.1016/S1463-0176(99)00012-5

    Article  CAS  Google Scholar 

  11. S. Berber, Y. K. Kwon, and D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613 (2000). https://doi.org/10.1103/PhysRevLett.84.4613

    Article  CAS  Google Scholar 

  12. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Phys. Rev. Lett. 87, 215502 (2001). https://doi.org/10.1103/PhysRevLett.87.215502

    Article  CAS  Google Scholar 

  13. E. A. Lyapunova, M. V. Grigor’ev, A. P. Skachkov, et al., “Structure and mechanical properties of zirconium oxide modified with carbon nanotubes,” Vestn. PNIPU, Mekh., No. 4, 10 (2015).https://doi.org/10.15593/perm.mech/2015.4.18

  14. Yu. I. Golovin, B. Ya. Farber, V. V. Korenkov, et al., “Mechanical properties of baddeleyite nanoceramics modified by carbon nanotubes,” Vestn. TGU, Estestv. Tekh. Nauki 17, 1380 (2012).

    Google Scholar 

  15. A. A. Leonov, “Microstructure and properties of single wall carbon nanotubes/zirconia composite,” in Proceedings of the International Conference with School and Master-Classes for Young Scientists on Chemical Technology of Functional Materials, Moscow, Nov. 30–Dec. 1,2017 (RKhTU im. D.I. Mendeleeva, Moscow, 2017), p. 35.

  16. Yu. I. Golovin, A. I. Tyurin, V. V. Korenkov, V. V. Rodaev, A. O. Zhigachev, A. V. Umrikhin, T. S. Pirozhkova, and S. S. Razlivalova, “Effect of carbon nanotubes on strength characteristics of nanostructured ceramic composites for biomedicine,” Nanotechnol. Russ. 13, 168 (2018).

    Article  CAS  Google Scholar 

  17. J. H. Shin and S. H. Hong, “Microstructure and mechanical properties of single wall carbon nanotube reinforced yttria stabilized zircona ceramics,” Mater. Sci. Eng., A 556, 382 (2012). https://doi.org/10.1016/j.msea.2012.07.001

    Article  CAS  Google Scholar 

  18. J. P. Zhou, Q. M. Gong, K. Y. Yuan, et al., “The effects of multiwalled carbon nanotubes on the hot-pressed 3 mol % yttria stabilized zirconia ceramics,” Mater. Sci. Eng. A 520, 153 (2009). https://doi.org/10.1016/j.msea.2009.05.014

    Article  CAS  Google Scholar 

  19. A. Leonov, “Effect of alumina nanofibers content on the microstructure and properties of ATZ composites fabricated by spark plasma sintering,” Mater. Today: Proc. 11, 66 (2019). https://doi.org/10.1016/j.matpr.2018.12.108

    Article  CAS  Google Scholar 

  20. A. A. Leonov and E. V. Abdulmenova, “Alumina-based composites reinforced with single-walled carbon nanotubes,” IOP Conf. Ser.: Mater. Sci. Eng. 511, 012001 (2019). https://doi.org/10.1088/1757-899X/511/1/012001

    Article  CAS  Google Scholar 

  21. G. R. Anstis, P. Chantikul, B. N. Lawn, and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements,” J. Am. Ceram. Soc. 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x

    Article  CAS  Google Scholar 

  22. A. Kasperski, A. Weibel, D. Alkattan, et al., “Microhardness and friction coefficient of multi-walled carbon nanotube-yttria-stabilized ZrO2 composites prepared by spark plasma sintering,” Scr. Mater. 69, 338 (2013). https://doi.org/10.1016/j.scriptamat.2013.05.015

    Article  CAS  Google Scholar 

  23. R. Hassan, A. Nisar, S. Ariharan, et al., “Multi-functionality of carbon nanotubes reinforced 3 mol % yttria stabilized zirconia structural biocomposites,” Mater. Sci. Eng., A 704, 329 (2017). https://doi.org/10.1016/j.msea.2017.08.039

    Article  CAS  Google Scholar 

  24. M. Mazaheri, D. Mari, Z. R. Hesabi, et al., “Multi-walled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature,” Compos. Sci. Technol. 71, 939 (2011). https://doi.org/10.1016/j.compscitech.2011.01.017

    Article  CAS  Google Scholar 

  25. L. Shen, Y. H. Han, C. Xiang, et al., “Phase transformation behavior of ZrO2 by addition of carbon nanotubes consolidated by spark plasma sintering,” Scr. Mater. 69, 736 (2013). https://doi.org/10.1016/j.scriptamat.2013.08.015

    Article  CAS  Google Scholar 

  26. L. Melk, J. J. Roa Rovira, F. Garcaía-Marro, et al., “Nanoindentation and fracture toughness of nanostructured zirconia/multi-walled carbon nanotube composites,” Ceram. Int. 41, 2453 (2015). https://doi.org/10.1016/j.ceramint.2014.10.060

    Article  CAS  Google Scholar 

  27. R. Poyato, J. Macias-Delgado, A. Gallardo-López, et al., “Microstructure and impedance spectroscopy of 3YTZP/SWNT ceramic nanocomposites,” Ceram. Int. 41, 12861 (2015). https://doi.org/10.1016/j.ceramint.2015.06.123

    Article  CAS  Google Scholar 

  28. R. Poyato, A. Gallardo-López, F. Gutiérrez-Mora, et al., “Effect of high SWNT content on the room temperature mechanical properties of fully dense 3YTZP/SWNT composites,” J. Eur. Ceram. Soc. 34, 1571 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.12.024

    Article  CAS  Google Scholar 

  29. M. H. Bocanegra-Bernal, A. Reyes-Rojas, A. Aguilar-Elguezabal, et al., “X-ray diffraction evidence of a phase transformation in zirconia by the presence of graphite and carbon nanotubes in zirconia toughened alumina composites,” Int. J. Refract. Met. Hard Mater. 35, 315 (2012). https://doi.org/10.1016/j.ijrmhm.2012.07.004

    Article  CAS  Google Scholar 

  30. A. A. Leonov, A. O. Khasanov, V. A. Danchenko, and O. L. Khasanov, “Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes,” IOP Conf. Ser.: Mater. Sci. Eng. 286, 012034 (2017). https://doi.org/10.1088/1757-899X/286/1/012034

    Article  Google Scholar 

  31. G. Yamamoto, Y. Sato, T. Takahashi, et al., “Preparation of single-walled carbon nanotube solids and their mechanical properties,” J. Mater. Res. 20, 2609 (2005). https://doi.org/10.1557/JMR.2005.0345

    Article  CAS  Google Scholar 

  32. A. Datye, K. Wu, G. Gomes, et al., “Synthesis, microstructure and mechanical properties of yttria stabilized zirconia (3YTZP)-multi-walled nanotube (MWNTs) nanocomposite by direct in-situ growth of MWNTs on zirconia particles,” Compos. Sci. Technol. 70, 2086 (2010). https://doi.org/10.1016/j.compscitech.2010.08.005

    Article  CAS  Google Scholar 

  33. R. Poyato, J. Macias-Delgado, A. Garcia-Valenzuela, et al., “Mechanical and electrical properties of low SWNT content 3YTZP composites,” J. Eur. Ceram. Soc. 35, 2351 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.02.022

    Article  CAS  Google Scholar 

  34. A. Kasperski, A. Weibel, D. Alkattan, et al., “Double-walled carbon nanotube/zirconia composites: preparation by spark plasma sintering, electrical conductivity and mechanical properties,” Ceram. Int. 41, 13731 (2015). https://doi.org/10.1016/j.ceramint.2015.08.034

    Article  CAS  Google Scholar 

  35. G. Suárez, B. K. Jang, E. F. Aglietti, and Y. Sakka, “Fabrication of dense ZrO2/CNT composites: influence of bead-milling treatment,” Metall. Mater. Trans. A 44, 4374 (2013). https://doi.org/10.1007/s11661-013-1775-y

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.R. Predtechenskii and A.E. Bezrodnyi for providing “Tuball” single-walled carbon nanotubes.

Funding

The study was performed on the basis of Nano Center of National Research Tomsk Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Leonov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, A.A., Dvilis, E.S., Khasanov, O.L. et al. CERAMIC COMPOSITE BASED ON ZIRCONIA REINFORCED BY SINGLE-WALLED CARBON NANOTUBES. Nanotechnol Russia 14, 118–124 (2019). https://doi.org/10.1134/S1995078019020095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019020095

Navigation