Adsorption Properties of the Film Formed by Gold and Copper Nanoparticles on Graphite


Some physicochemical properties of homogeneous and heterogeneous films formed by Au and Cu nanoparticles on graphite are studied by scanning tunneling microscopy and spectroscopy. It is found that the nanoparticles have a shape close to spherical with a diameter of 3‒6 nm, the gold particles do not contain impurities, and the copper particles can be coated with oxide. The adsorption properties of nanostructured coatings with respect to hydrogen, carbon oxide, and oxygen are determined. Copper oxide is reduced by carbon oxide and hydrogen, but the latter is also adsorbed onto oxide-free copper particles and gold. Exposure to oxygen results in the reformation of the oxide on copper. The possibility of rearranging the electronic structure of copper nanoparticles during hydrogen adsorption is confirmed by the results of quantum chemical simulation.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1

    D. Kim, J. Resasco, Y. Yu, A. M. Asiri, and P. D. Yang, “Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles,” Nat. Commun. 5, 4948–4956 (2014).

    Article  Google Scholar 

  2. 2

    S. Neatu, J. A. Macia-Agullo, P. Concepcion, and H. Garcia, “Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water,” J. Am. Chem. Soc. 136, 15969–15976 (2014).

    Article  Google Scholar 

  3. 3

    R. He, Y. C. Wang, X. Y. Wang, Z. Wang, G. Liu, W. Zhou, L. Wen, Q. Li, X. Wang, X. Chen, J. Zeng, and J. G. Hou, “Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties,” Nat. Commun. 5, 4327–4337 (2014).

    Article  Google Scholar 

  4. 4

    C. L. Bracey, P. R. Ellis, and G. J. Hutchings, “Application of copper-gold alloys in catalysis: current status and future perspectives,” Chem. Soc. Rev. 38, 2231–2243 (2009).

    Article  Google Scholar 

  5. 5

    T. Pasini, M. Piccinini, M. Blosi, R. Bonelli, S. Albonetti, N. Dimitratos, J. A. Lopez-Sanchez, M. Sankar, Q. He, C. J. Kiely, G. J. Hutchings, and F. Cavani, “Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles,” Green Chem. 13, 2091–2099 (2011).

    Article  Google Scholar 

  6. 6

    C. Della Pina, E. Falletta, and M. Rossi, “Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst,” J. Catal. 260, 384–386 (2008).

    Article  Google Scholar 

  7. 7

    J. C. Bauer, G. M. Veith, L. F. Allard, Y. Oyola, S. H. Overbury, and S. Dai, “Silica-supported Au-CuOx hybrid nanocrystals as active and selective catalysts for the formation of acetaldehyde from the oxidation of ethanol,” ACS Catal. 2, 2537–2546 (2012).

    Article  Google Scholar 

  8. 8

    J. Llorca, M. Dominguez, C. Ledesma, R. J. Chimentão, F. Medina, J. Sueiras, I. Angurell, M. Seco, and O. Rossell, “Propene epoxidation over TiO2-supported Au–Cu alloy catalysts prepared from thiol-capped nanoparticles,” J. Catal. 258, 187–198 (2008).

    Article  Google Scholar 

  9. 9

    L. Wang, Y. Zhong, H. Jin, D. Widmann, J. Weissmuller, and R. J. Behm, “Catalytic activity of nanostructured Au: scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au,” Beilstein J. Nanotechnol. 4, 111–128 (2013).

    Article  Google Scholar 

  10. 10

    X. Liu, A. Wang, L. Li, T. Zhang, C.-Y. Mou, and J.-F. Lee, “Synthesis of Au–Ag alloy nanoparticles supported on silica gel via galvanic replacement reaction,” J. Catal. 278, 288–296 (2011).

    Article  Google Scholar 

  11. 11

    S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (RGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” Electrochem. Acta 180, 1075–1084 (2015).

    Article  Google Scholar 

  12. 12

    General Principles and Applications to Clean and Absorbate-Covered Surfaces, Ed. by H.-J. Guntherodt and R. Wiesendanger (Springer, Berlin, 1992).

    Google Scholar 

  13. 13

    G. Binnig, H. Rohrer, C. Berber, and E. Weibel, “Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40, 178–180 (1981).

    Article  Google Scholar 

  14. 14

    E. Meyer, H. J. Hug, and R. Bennewitz, Scanning Probe Microscopy (Springer, Berlin, 2004).

    Google Scholar 

  15. 15

    R. J. Hamers and Y. J. Wang, “Atomically-resolved studies of the chemistry and bonding at silicon surfaces,” Chem. Rev. 96, 1261–1290 (1996).

    Article  Google Scholar 

  16. 16

    R. J. Hamers, R. M. Tromp, and J. E. Demuth, “Surface electronic structure of Si (111)-(7 × 7) resolved in real space,” Phys. Rev. Lett. 56, 1972–1975 (1986).

    Article  Google Scholar 

  17. 17

    A. K. Gatin, M. V. Grishin, S. Yu. Sarvadii, and B. R. Shub, “Interaction of gaseous reagents on gold and nickel nanoparticles,” Russ. J. Phys. Chem. B 12, 317–324 (2018).

    Article  Google Scholar 

  18. 18

    M. V. Grishin, A. K. Gatin, N. V. Dokhlikova, A. A. Kirsankin, A. I. Kulak, S. A. Nikolaev, and B. R. Shub, “Adsorption and interaction of hydrogen and oxygen on the surface of separate crystalline gold nanoparticles,” Kinet. Catal. 56, 532–539 (2015).

    Article  Google Scholar 

  19. 19

    T. Ozaki, “Variationally optimized atomic orbitals for large-scale electronic structures,” Phys. Rev. B 67, 155108 (2003).

    Article  Google Scholar 

  20. 20

    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  21. 21

    M. Heinemann, B. Eifert, and C. Heiliger, “Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3,” Phys. Rev. B 87, 115111 (2013).

    Article  Google Scholar 

  22. 22

    B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, Th. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost, S. Shokovets, C. Müller, and C. Ronning, “Front cover: binary copper oxide semiconductors: from materials towards devices,” Phys. Status Solidi B 249, 1487–1647 (2012).

    Article  Google Scholar 

  23. 23

    J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk, “Electronic structure of Cu2O and CuO,” Phys. Rev. B 38, 11322–11330 (1988).

    Article  Google Scholar 

  24. 24

    F. P. Koffyberg and F. A. Benko, “A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO,” J. Appl. Phys. 53, 1173–1177 (1982).

    Article  Google Scholar 

  25. 25

    F. Marabelli, G. B. Parravicini, and F. Salghetti-Drioli, “Optical gap of CuO,” Phys. Rev. B 52, 1433–1436 (1995).

    Article  Google Scholar 

  26. 26

    J. F. Pierson, A. Thobor-Keck, and A. Billard, “Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering,” Appl. Surf. Sci. 210, 359–367 (2003).

    Article  Google Scholar 

  27. 27

    F. I. Dalidchik, S. A. Kovalevskii, and A. V. Kovytin, “Atomic and electronic structure of surface nanoscale graphite structures,” Khim. Fiz. 23 (7), 83–90 (2004).

    Google Scholar 

  28. 28

    A. di Benedetto, G. Landi, and L. Lisi, “Improved CO-PROX performance of CuO/CeO2 catalysts by using nanometric ceria as support,” Int. J. Hydrogen Energy 42, 12262–12275 (2017).

    Article  Google Scholar 

  29. 29

    E. A. Goldstein and R. E. Mitchell, “Chemical kinetics of copper oxide reduction with carbon monoxide,” Proc. Combust. Inst. 33, 2803–2810 (2011).

    Article  Google Scholar 

  30. 30

    Y. Bu, S. Er, J. W. Niemantsverdriet, and H. O. A. Fredriksson, “Preferential oxidation of CO in H2 on Cu and Cu/CeOx catalysts studied by in situ UV-vis and mass spectrometry and DFT,” J. Catal. 357, 176–187 (2018).

    Article  Google Scholar 

  31. 31

    J. Y. Kim, J. A. Rodriguez, J. C. Hanson, A. I. Frenkel, and P. L. Lee, “Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides,” J. Am. Chem. Soc. 125, 10684–10692 (2003).

    Article  Google Scholar 

  32. 32

    J. Harris and A. Liebsch, “On the physisorption interaction of H2 with Cu-metal,” Phys. Scr. 4, 14–16 (1983).

    Article  Google Scholar 

  33. 33

    T. Caputo, L. Lisi, R. Pirone, and G. Russo, “On the role of redox properties of CuO/CeO2 catalysts in the preferential oxidation of CO in H2-rich gases,” Appl. Catal., A 348, 42–53 (2008).

  34. 34

    L. Rout, A. Kumar, R. S. Dhaka, G. N. Reddy, S. Giri, and P. Dash, “Bimetallic Au-Cu alloy nanoparticles on reduced graphene oxide support: synthesis, catalytic activity and investigation of synergistic effect by DFT analysis,” Appl. Catal., A 538, 107–122 (2017).

  35. 35

    J. Han, Y. Zahou, Y.-Q. Chai, L. Mao, Y.-L. Yuan, and R. Yuan, “Highly conducting gold nanoparticles-graphene nanohybrid films for ultrasensitive detection of carcinoembryonic antigen,” Talanta 85, 130–135 (2011).

    Article  Google Scholar 

  36. 36

    J. Wang, J. Li, A. J. Baca, J. Hu, F. Zhou, W. Yan, and D. W. Pang, “Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates,” Anal. Chem. 75, 3941–3945 (2003).

    Article  Google Scholar 

  37. 37

    W. Zhan, J. Wang, H. Wang, J. Zhang, X. Liu, P. Zhang, M. Chi, Y. Guo, Y. Guo, G. Lu, S. Sun, S. Dai, and H. Zhu, “Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation,” J. Am. Chem. Soc. 139, 8846–8854 (2017).

    Article  Google Scholar 

  38. 38

    N. V. Dokhlikova, N. N. Kolchenko, M. V. Grishin, A. K. Gatin, and B. R. Shub, “Substrate effect on hydrogen adsorption on gold cluster,” Nanotechnol. Russ. 11, 735–742 (2016).

    Article  Google Scholar 

Download references


This work was supported by the Russian Science Foundation, project no. 18-73-00195. The resources of the Interdepartmental Supercomputer Center of the Russian Academy of Sciences were used in the calculations.

Author information



Corresponding author

Correspondence to M. V. Grishin.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gatin, A.K., Grishin, M.V., Dokhlikova, N.V. et al. Adsorption Properties of the Film Formed by Gold and Copper Nanoparticles on Graphite. Nanotechnol Russia 13, 453–463 (2018).

Download citation