Nanotechnologies in Russia

, Volume 13, Issue 9–10, pp 453–463 | Cite as

Adsorption Properties of the Film Formed by Gold and Copper Nanoparticles on Graphite

  • A. K. Gatin
  • M. V. GrishinEmail author
  • N. V. Dokhlikova
  • S. A. Ozerin
  • S. Yu. Sarvadii
  • B. R. Shub


Some physicochemical properties of homogeneous and heterogeneous films formed by Au and Cu nanoparticles on graphite are studied by scanning tunneling microscopy and spectroscopy. It is found that the nanoparticles have a shape close to spherical with a diameter of 3‒6 nm, the gold particles do not contain impurities, and the copper particles can be coated with oxide. The adsorption properties of nanostructured coatings with respect to hydrogen, carbon oxide, and oxygen are determined. Copper oxide is reduced by carbon oxide and hydrogen, but the latter is also adsorbed onto oxide-free copper particles and gold. Exposure to oxygen results in the reformation of the oxide on copper. The possibility of rearranging the electronic structure of copper nanoparticles during hydrogen adsorption is confirmed by the results of quantum chemical simulation.



This work was supported by the Russian Science Foundation, project no. 18-73-00195. The resources of the Interdepartmental Supercomputer Center of the Russian Academy of Sciences were used in the calculations.


  1. 1.
    D. Kim, J. Resasco, Y. Yu, A. M. Asiri, and P. D. Yang, “Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles,” Nat. Commun. 5, 4948–4956 (2014).CrossRefGoogle Scholar
  2. 2.
    S. Neatu, J. A. Macia-Agullo, P. Concepcion, and H. Garcia, “Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water,” J. Am. Chem. Soc. 136, 15969–15976 (2014).CrossRefGoogle Scholar
  3. 3.
    R. He, Y. C. Wang, X. Y. Wang, Z. Wang, G. Liu, W. Zhou, L. Wen, Q. Li, X. Wang, X. Chen, J. Zeng, and J. G. Hou, “Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties,” Nat. Commun. 5, 4327–4337 (2014).CrossRefGoogle Scholar
  4. 4.
    C. L. Bracey, P. R. Ellis, and G. J. Hutchings, “Application of copper-gold alloys in catalysis: current status and future perspectives,” Chem. Soc. Rev. 38, 2231–2243 (2009).CrossRefGoogle Scholar
  5. 5.
    T. Pasini, M. Piccinini, M. Blosi, R. Bonelli, S. Albonetti, N. Dimitratos, J. A. Lopez-Sanchez, M. Sankar, Q. He, C. J. Kiely, G. J. Hutchings, and F. Cavani, “Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles,” Green Chem. 13, 2091–2099 (2011).CrossRefGoogle Scholar
  6. 6.
    C. Della Pina, E. Falletta, and M. Rossi, “Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst,” J. Catal. 260, 384–386 (2008).CrossRefGoogle Scholar
  7. 7.
    J. C. Bauer, G. M. Veith, L. F. Allard, Y. Oyola, S. H. Overbury, and S. Dai, “Silica-supported Au-CuOx hybrid nanocrystals as active and selective catalysts for the formation of acetaldehyde from the oxidation of ethanol,” ACS Catal. 2, 2537–2546 (2012).CrossRefGoogle Scholar
  8. 8.
    J. Llorca, M. Dominguez, C. Ledesma, R. J. Chimentão, F. Medina, J. Sueiras, I. Angurell, M. Seco, and O. Rossell, “Propene epoxidation over TiO2-supported Au–Cu alloy catalysts prepared from thiol-capped nanoparticles,” J. Catal. 258, 187–198 (2008).CrossRefGoogle Scholar
  9. 9.
    L. Wang, Y. Zhong, H. Jin, D. Widmann, J. Weissmuller, and R. J. Behm, “Catalytic activity of nanostructured Au: scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au,” Beilstein J. Nanotechnol. 4, 111–128 (2013).CrossRefGoogle Scholar
  10. 10.
    X. Liu, A. Wang, L. Li, T. Zhang, C.-Y. Mou, and J.-F. Lee, “Synthesis of Au–Ag alloy nanoparticles supported on silica gel via galvanic replacement reaction,” J. Catal. 278, 288–296 (2011).CrossRefGoogle Scholar
  11. 11.
    S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (RGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” Electrochem. Acta 180, 1075–1084 (2015).CrossRefGoogle Scholar
  12. 12.
    General Principles and Applications to Clean and Absorbate-Covered Surfaces, Ed. by H.-J. Guntherodt and R. Wiesendanger (Springer, Berlin, 1992).Google Scholar
  13. 13.
    G. Binnig, H. Rohrer, C. Berber, and E. Weibel, “Tunneling through a controllable vacuum gap,” Appl. Phys. Lett. 40, 178–180 (1981).CrossRefGoogle Scholar
  14. 14.
    E. Meyer, H. J. Hug, and R. Bennewitz, Scanning Probe Microscopy (Springer, Berlin, 2004).CrossRefGoogle Scholar
  15. 15.
    R. J. Hamers and Y. J. Wang, “Atomically-resolved studies of the chemistry and bonding at silicon surfaces,” Chem. Rev. 96, 1261–1290 (1996).CrossRefGoogle Scholar
  16. 16.
    R. J. Hamers, R. M. Tromp, and J. E. Demuth, “Surface electronic structure of Si (111)-(7 × 7) resolved in real space,” Phys. Rev. Lett. 56, 1972–1975 (1986).CrossRefGoogle Scholar
  17. 17.
    A. K. Gatin, M. V. Grishin, S. Yu. Sarvadii, and B. R. Shub, “Interaction of gaseous reagents on gold and nickel nanoparticles,” Russ. J. Phys. Chem. B 12, 317–324 (2018).CrossRefGoogle Scholar
  18. 18.
    M. V. Grishin, A. K. Gatin, N. V. Dokhlikova, A. A. Kirsankin, A. I. Kulak, S. A. Nikolaev, and B. R. Shub, “Adsorption and interaction of hydrogen and oxygen on the surface of separate crystalline gold nanoparticles,” Kinet. Catal. 56, 532–539 (2015).CrossRefGoogle Scholar
  19. 19.
    T. Ozaki, “Variationally optimized atomic orbitals for large-scale electronic structures,” Phys. Rev. B 67, 155108 (2003).CrossRefGoogle Scholar
  20. 20.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
  21. 21.
    M. Heinemann, B. Eifert, and C. Heiliger, “Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3,” Phys. Rev. B 87, 115111 (2013).CrossRefGoogle Scholar
  22. 22.
    B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, Th. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost, S. Shokovets, C. Müller, and C. Ronning, “Front cover: binary copper oxide semiconductors: from materials towards devices,” Phys. Status Solidi B 249, 1487–1647 (2012).CrossRefGoogle Scholar
  23. 23.
    J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk, “Electronic structure of Cu2O and CuO,” Phys. Rev. B 38, 11322–11330 (1988).CrossRefGoogle Scholar
  24. 24.
    F. P. Koffyberg and F. A. Benko, “A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO,” J. Appl. Phys. 53, 1173–1177 (1982).CrossRefGoogle Scholar
  25. 25.
    F. Marabelli, G. B. Parravicini, and F. Salghetti-Drioli, “Optical gap of CuO,” Phys. Rev. B 52, 1433–1436 (1995).CrossRefGoogle Scholar
  26. 26.
    J. F. Pierson, A. Thobor-Keck, and A. Billard, “Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering,” Appl. Surf. Sci. 210, 359–367 (2003).CrossRefGoogle Scholar
  27. 27.
    F. I. Dalidchik, S. A. Kovalevskii, and A. V. Kovytin, “Atomic and electronic structure of surface nanoscale graphite structures,” Khim. Fiz. 23 (7), 83–90 (2004).Google Scholar
  28. 28.
    A. di Benedetto, G. Landi, and L. Lisi, “Improved CO-PROX performance of CuO/CeO2 catalysts by using nanometric ceria as support,” Int. J. Hydrogen Energy 42, 12262–12275 (2017).CrossRefGoogle Scholar
  29. 29.
    E. A. Goldstein and R. E. Mitchell, “Chemical kinetics of copper oxide reduction with carbon monoxide,” Proc. Combust. Inst. 33, 2803–2810 (2011).CrossRefGoogle Scholar
  30. 30.
    Y. Bu, S. Er, J. W. Niemantsverdriet, and H. O. A. Fredriksson, “Preferential oxidation of CO in H2 on Cu and Cu/CeOx catalysts studied by in situ UV-vis and mass spectrometry and DFT,” J. Catal. 357, 176–187 (2018).CrossRefGoogle Scholar
  31. 31.
    J. Y. Kim, J. A. Rodriguez, J. C. Hanson, A. I. Frenkel, and P. L. Lee, “Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides,” J. Am. Chem. Soc. 125, 10684–10692 (2003).CrossRefGoogle Scholar
  32. 32.
    J. Harris and A. Liebsch, “On the physisorption interaction of H2 with Cu-metal,” Phys. Scr. 4, 14–16 (1983).CrossRefGoogle Scholar
  33. 33.
    T. Caputo, L. Lisi, R. Pirone, and G. Russo, “On the role of redox properties of CuO/CeO2 catalysts in the preferential oxidation of CO in H2-rich gases,” Appl. Catal., A 348, 42–53 (2008).Google Scholar
  34. 34.
    L. Rout, A. Kumar, R. S. Dhaka, G. N. Reddy, S. Giri, and P. Dash, “Bimetallic Au-Cu alloy nanoparticles on reduced graphene oxide support: synthesis, catalytic activity and investigation of synergistic effect by DFT analysis,” Appl. Catal., A 538, 107–122 (2017).Google Scholar
  35. 35.
    J. Han, Y. Zahou, Y.-Q. Chai, L. Mao, Y.-L. Yuan, and R. Yuan, “Highly conducting gold nanoparticles-graphene nanohybrid films for ultrasensitive detection of carcinoembryonic antigen,” Talanta 85, 130–135 (2011).CrossRefGoogle Scholar
  36. 36.
    J. Wang, J. Li, A. J. Baca, J. Hu, F. Zhou, W. Yan, and D. W. Pang, “Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates,” Anal. Chem. 75, 3941–3945 (2003).CrossRefGoogle Scholar
  37. 37.
    W. Zhan, J. Wang, H. Wang, J. Zhang, X. Liu, P. Zhang, M. Chi, Y. Guo, Y. Guo, G. Lu, S. Sun, S. Dai, and H. Zhu, “Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation,” J. Am. Chem. Soc. 139, 8846–8854 (2017).CrossRefGoogle Scholar
  38. 38.
    N. V. Dokhlikova, N. N. Kolchenko, M. V. Grishin, A. K. Gatin, and B. R. Shub, “Substrate effect on hydrogen adsorption on gold cluster,” Nanotechnol. Russ. 11, 735–742 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. K. Gatin
    • 1
  • M. V. Grishin
    • 1
    Email author
  • N. V. Dokhlikova
    • 1
  • S. A. Ozerin
    • 1
  • S. Yu. Sarvadii
    • 1
  • B. R. Shub
    • 1
  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations