Skip to main content
Log in

Lithium-Ion Conductivity of Polymers Based on Sulfonated Polystyrene and Polymethylpentene Intercalated by Organic Solvents

  • Functional Nanomaterials
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Ion-exchange membranes based on polymethylpentene and sulfonated polystyrene with different grafting degrees were obtained. Solvation and mobility of lithium ions depending on the composition of initial organic solvents were studied. The highest ionic conductivity at room temperature (30°C) are obtained for the membranes containing dimethylsulfoxide (σ = 1.31 × 10–4 S/cm for membrane with GD = 78%). Membranes containing dimethylformamide are characterized by a constant phase composition in a broad temperature range and the highest ionic conductivity at low temperature (σ = 9 × 10–6 S/cm at–20°C for a polymer with GD = 78%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Quartarone and P. Mustarelli, “Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives,” Chem. Soc. Rev. 40, 2525–2540 (2011).

    Article  Google Scholar 

  2. A. B. Yaroslavtsev, “Solid electrolytes: main prospects of research and development,” Russ. Chem. Rev. 85, 1255–1276 (2016).

    Article  Google Scholar 

  3. Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, and Y. Huang, “Promises, challenges and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries,” Adv. Mater. 30, 1705702 (2018).

    Article  Google Scholar 

  4. I. A. Stenina, I. Y. Pinus, A. I. Rebrov, and A. B. Yaroslavtsev, “Lithium and hydrogen ions transport in materials with NASICON structure,” Solid State Ionics 175, 445–449 (2004).

    Article  Google Scholar 

  5. Z. Jian, Y. S. Hu, X. Ji, and W. Chen, “NASICONstructured materials for energy storage,” Adv. Mater. 29, 1601925 (2017).

    Article  Google Scholar 

  6. J. F. Nonemacher, C. Hüter, H. Zheng, J. Malzbender, M. Kruger, R. Spatschek, and M. Finsterbusch, “Microstructure and properties investigation of garnet structured Li7La3Zr2O12 as electrolyte for all-solidstate batteries,” Solid State Ionics 321, 126–134 (2018).

    Article  Google Scholar 

  7. C. Li, Z. Xi, D. Guo, X. Chen, L. Yin, “Chemical immobilization effect on lithium polysulfides for lithium-sulfur batteries,” Smal. 14, 1701986 (2018).

    Article  Google Scholar 

  8. Y. Xue and D. J. Quesnel, “Synthesis and electrochemical study of sodium ion transport polymer gel electrolytes,” RSC Adv. 6, 7504–7510 (2016).

    Article  Google Scholar 

  9. H. Gao, W. Zhou, K. Park, and J. B. Goodenough, “A sodium-ion battery with a low-cost cross-linked gel-polymer electrolyte,” Adv. Energy Mater. 6, 1600467 (2016).

    Article  Google Scholar 

  10. L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, G. Cui, and L. Chen, “All solid-state polymer electrolytes for high-performance lithium ion batteries,” Energy Storage Mater. 5, 139–164 (2016).

    Article  Google Scholar 

  11. B. Sun, J. Mindemark, K. Edstrom, and D. Brandell, “Polycarbonate-based solid polymer electrolytes for Li-ion batteries,” Solid State Ionics 262, 738–742 (2014).

    Article  Google Scholar 

  12. M. Armand, “Polymer electrolytes—an overview,” Solid State Ionics 9–10, 745–754 (1983).

    Google Scholar 

  13. V. di Noto, S. Lavina, G. A. Giffin, E. Negro, and B. Scrosati, “Polymer electrolytes: present, past and future,” Electrochim. Acta 57, 4–13 (2011).

    Article  Google Scholar 

  14. K. Xu, “Nonaqueous liquid electrolytes for lithiumbased rechargeable batteries,” Chem. Rev. 104, 4303–4417 (2005).

    Article  Google Scholar 

  15. A. Ghosh and P. Kofinas, “Nanostructured block copolymer dry electrolyte,” J. Electrochem. Soc. 151, A428–A431 (2008).

    Google Scholar 

  16. J. F. Snyder, M. A. Ratner, and D. F. Shriver, “Ion conductivity of comb polysiloxane polyelectrolytes containing oligoether and perfluoroether sidechains,” J. Electrochem. Soc. 150, A1090–A1094 (2003).

    Google Scholar 

  17. P. Han, Y. Zhu, and J. Liu, “An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method,” J. Power Sources 284, 459–465 (2015).

    Article  Google Scholar 

  18. Y. Liu, Z. Cai, L. Tan, and L. Li, “Ion exchange membranes as electrolyte for high performance li-ion batteries,” Energy Environ. Sci 5, 9007–9013 (2012).

    Article  Google Scholar 

  19. Z. Cai, Y. Liu, S. Liu, L. Li, and Y. Zhang, “High performance of lithium-ion polymer battery based on nonaqueous lithiated perfluorinated sulfonic ion-exchange membranes,” Energy Environ. Sci. 5, 5690–5693 (2012).

    Article  Google Scholar 

  20. P. Aldebert, M. Guglieimi, and M. Pineri, “Ionic conductivity of bulk, gels and solutions of perfluorinated ionomer membranes,” Polym. J. 23, 399–406 (1991).

    Article  Google Scholar 

  21. M. Doyle, M. E. Lewittes, M. G. Roelofs, S. A. Perusich, and R. E. Lowrey, “Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties,” J. Membr. Sci. 184, 257–273 (2001).

    Article  Google Scholar 

  22. J. Gao, C. Sun, L. Xu, J. Chen, C. Wang, D. Guo, and H. Chen, “Lithiated nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode,” J. Power Sources 382, 179–189 (2018).

    Article  Google Scholar 

  23. E. A. Sanginov, E. Yu. Evshchik, R. R. Kayumov, and Yu. A. Dobrovol’skii, “Lithium-ion conductivity of the nafion membrane swollen in organic solvents,” Russ. J. Electrochem. 51, 986–990 (2015).

    Article  Google Scholar 

  24. A. I. Karelin, R. R. Kayumov, and Yu. A. Dobrovol’skii, “Structure of lithium ion-conducting polymer membranes based on nafion plasticized with dimethylsulfoxide,” Pet. Chem. 56, 1020–1026 (2017).

    Article  Google Scholar 

  25. M. Nasef, “Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films,” Prog. Polym. Sci. 29, 499–561 (2004).

    Article  Google Scholar 

  26. T. Zhou, R. Shao, S. Chen, X. He, J. Qiao, and J. Zhang, “A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells,” J. Power Sources 293, 946–975 (2015).

    Article  Google Scholar 

  27. E. Y. Safronova, D. V. Golubenko, N. V. Shevlyakova, M. G. D’yakova, V. A. Tverskoi, L. Dammak, D. Grande, and A. B. Yaroslavtsev, “New cationexchange membranes based on cross-linked sulfonated polystyrene and polyethylene for power generation systems,” J. Membr. Sci. 515, 196–203 (2016).

    Article  Google Scholar 

  28. D. V. Golubenko, E. Y. Safronova, A. B. Ilyin, N. V. Shevlyakova, V. A. Tverskoi, G. Pourcelly, and A. B. Yaroslavtsev, “Water state and ionic conductivity of grafted ion exchange membranes based on polyethylene and sulfonated polystyrene,” Mendeleev Commun. 27, 380–381 (2017).

    Article  Google Scholar 

  29. Z. Xu, J. Wang, L. Shen, D. Men, and Y. Xu, “Microporous polypropylene hollow fiber membrane. Part I. Surface modification by the graft polymerization of acrylic acid,” J. Membr. Sci. 196, 221–229 (2002).

    Article  Google Scholar 

  30. Y. Ding, X. Shen, J. Zeng, X. Wang, L. Peng, P. Zhang, and J. Zhao, “Pre-irradiation grafted single lithiumion conducting polymer electrolyte based on poly(vinylidene fluoride),” Solid State Ionics 323, 16–24 (2018).

    Article  Google Scholar 

  31. N. Walsby, F. Sundholm, T. Kallio, and G. Sundholm, “Radiation-grafted ion-exchange membranes: influence of the initial matrix on the synthesis and structure,” J. Polym. Sci., Part A 39, 3008–3017 (2001).

    Article  Google Scholar 

  32. J. A. Horsfall and K. V. Lovell, “Synthesis and characterization of sulfonic acid-containing ion exchange membranes based on hydrocarbon and fluorocarbon polymers,” Eur. Polym. J. 38, 1671–1682 (2002).

    Article  Google Scholar 

  33. D. V. Golubenko and A. B. Yaroslavtsev, “New approach to the preparation of grafted ion exchange membranes based on UV-oxidized polymer films and sulfonated polystyrene,” Mendeleev Commun. 27, 572–573 (2017).

    Article  Google Scholar 

  34. V. Gutmann, “Empirical parameters for donor and acceptor properties of solvents,” Electrochim. Acta 21, 661–670 (1976).

    Article  Google Scholar 

  35. E. Pasgreta, R. Puchta, M. Galle, N. van Eikema Hommes, A. Zahl, and R. van Eldik, “Ligand-exchange processes on solvated lithium cations: DMSO and water/DMSO mixtures,” ChemPhysChem 8, 1315–1320 (2007).

    Article  Google Scholar 

  36. V. I. Volkov, E. V. Volkov, S. V. Timofeev, E. A. Sanginov, A. A. Pavlov, E. Yu. Safronova, I. A. Stenina, and A. B. Yaroslavtsev, “Diffusion mobility of alkali metals in perfluorinated sulfocationic and carboxylic membranes as probed by 1H, 7Li, 23Na, and 133Cs NMR spectroscopy,” Russ. J. Inorg. Chem. 55, 318–324 (2010).

    Article  Google Scholar 

  37. D. Yu. Voropaeva, S. A. Novikova, T. L. Kulova, and A. B. Yaroslavtsev, “Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents,” Ionics 24, 1685–1692 (2018).

    Article  Google Scholar 

  38. V. I. Volkov and A. A. Marinin, “NMR methods for studying ion and molecular transport in polymer electrolytes,” Russ. Chem. Rev. 82, 248–272 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Voropaeva.

Additional information

Original Russian Text © D.Yu. Voropaeva, D.V. Golubenko, S.A. Novikova, A.B. Yaroslavtsev, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voropaeva, D.Y., Golubenko, D.V., Novikova, S.A. et al. Lithium-Ion Conductivity of Polymers Based on Sulfonated Polystyrene and Polymethylpentene Intercalated by Organic Solvents. Nanotechnol Russia 13, 256–260 (2018). https://doi.org/10.1134/S1995078018030199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018030199

Navigation