Skip to main content
Log in

Effect of Carbon Nanotubes on Strength Characteristics of Nanostructured Ceramic Composites for Biomedicine

  • Materials of the Conference “Nanomaterials and Living Systems” (NLS-2018), Kazan, 2018
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The relationship between synthesis conditions, structure, and properties of the baddeleyite-based engineering nanostructured composite zirconia ceramic (natural zirconia mineral) with modifying alloying elements is studied. The elaborated composites possess high physical and mechanical properties at a level that is not only not inferior, but even superior to those of analogous ceramics prepared from precipitated zirconia (e.g., density is 0.95 of the theoretical value, the hardness reaches 12 GPa, the Young modulus is 220 ± 15 GPa, and the fracture toughness reaches 9 MPa m0.5). The embedding of carbon nanotubes (CNTs) is shown to alter the physical and mechanical properties of ceramics: the hardness is somewhat reduced, but fracture toughness KC gains more than 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Basu and K. Balani, Advanced Structural Ceramics (Wiley, Hoboken, NJ, 2011).

    Book  Google Scholar 

  2. J. F. Bartolome, A. H. de Aza, J. Y. Pastor, J. Llorca, R. Torrecillas, and G. Bruno, “Alumina/zirconia micro/nanocomposites: a new material for biomedical applications with superior sliding wear resistance,” J. Am. Ceram. Soc. 90, 3177–3184 (2007).

    Article  Google Scholar 

  3. P. Palmero, “Structural ceramic nanocomposites: a review of properties and powders synthesis methods,” Nanomaterials, No. 5, 656–696 (2015).

    Article  Google Scholar 

  4. A. O. Zhigachev, A. V. Umrikhin, and Yu. I. Golovin, “The effect of calcia content on phase composition and mechanical properties of Ca-TZP prepared by highenergy milling of baddeleyite,” Ceram. Int. 41, 13804–13809 (2015).

    Article  Google Scholar 

  5. C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci. 46, 1–184 (2001).

    Article  Google Scholar 

  6. A. O. Zhigachev, A. V. Umrikhin, Yu. I. Golovin, and B. Ya. Farber, “Preparation of nanocrystalline calciastabilized tetragonal zirconia by high-energy milling of baddeleyite,” Int. J. Appl. Ceram. Technol. 12, E82–E89 (2015).

    Article  Google Scholar 

  7. W. Xue, Z. Xie, J. Yi, and C. A. Wang, “Spark plasma sintering and characterization of 2Y-TZP ceramics,” Ceram. Int. 41, 4829–4835 (2015).

    Article  Google Scholar 

  8. M. H. Bocanegra-Bernal, C. Dominguez-Rios, J. Echeberria, A. Reyes-Rojas, A. Garcia-Reyes, and A. Aguilar-Elguezabal, “Spark plasma sintering of multi-, single/double- and single-walled carbon nanotube-reinforced alumina composites: is it justifiable the effort to reinforce them?,” Ceram. Int. 42, 2054–2062 (2016).

    Article  Google Scholar 

  9. V. T. Kalinnikov, V. R. Lebedev, E. P. Lokshin, V. P. Lyakhov, and V. F. Popovich, “The technology of obtaining zirconium dioxide of special purity from baddeleyite concentrate of kovdor mining and processing plant,” in Physicochemical Problems of New Construction Ceramic Materials Creation (Syktyvkar, 2002), pp. 227–232 [in Russian].

    Google Scholar 

  10. K. Lu, “Sintering of nanoceramics,” Int. Mater. Rev. 53, 21–38 (2008).

    Article  Google Scholar 

  11. A. O. Zhigachev and Yu. I. Golovin, “Nanostructured zirconia ceramic based on baddeleyite domestic raw,” Nanotechnol. Russ. 12, 400–408 (2017).

    Article  Google Scholar 

  12. C. A. Cooper, R. J. Young, and M. Halsal, “Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy,” Composites, Part A 32, 401–411 (2001).

    Article  Google Scholar 

  13. Yu. I. Golovin, “Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers and films: review,” Phys. Solid State 50, 2205–2236 (2008).

    Article  Google Scholar 

  14. J. Alcala, “Instrumented micro-indentation of zirconia ceramics,” J. Am. Ceram. Soc. 83, 1977–1984 (2000).

    Article  Google Scholar 

  15. N. A. Fedosova, E. M. Kol’tsova, N. A. Popova, E. V. Zharikov, and E. C. Lukin, “Ceramic matrix composites reinforced with carbon nanotubes: spark plasma sintering, modeling, optimization,” Refract. Ind. Ceram. 56, 636–640 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Golovin.

Additional information

Original Russian Text © Yu.I. Golovin, A.I. Tyurin, V.V. Korenkov, V.V. Rodaev, A.O. Zhigachev, A.V. Umrikhin, T.S. Pirozhkova, S.S. Razlivalova, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, Y.I., Tyurin, A.I., Korenkov, V.V. et al. Effect of Carbon Nanotubes on Strength Characteristics of Nanostructured Ceramic Composites for Biomedicine. Nanotechnol Russia 13, 168–172 (2018). https://doi.org/10.1134/S1995078018020039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018020039

Navigation