Advertisement

Nanotechnologies in Russia

, Volume 12, Issue 7–8, pp 327–337 | Cite as

Hybrid States of Biomolecules in Strong-Coupling Regime

  • A. V. Kosmyntseva
  • I. R. NabievEmail author
  • Yu. P. Rakovich
Article
  • 61 Downloads

Abstract

The strong coupling of exciton and plasmon states is the result of the reversible energy exchange between the excited states of atomic exciton systems or molecules and the electromagnetic field. This leads to the formation of hybrid (mixed) states whose energies differ from those of the exciton and photon. To date, the implementation of strong-coupling hybrid states has been attracting great attention in terms of designing state-of-the-art emitting systems and quantum information technologies; controlling chemical reaction efficiency and targeted influence on biological systems; and applying the observed effects in medicine, microelectronics, robotics technologies, and other fields. This review deals with a model of strong light-matter interaction and its characteristics, ways to the practical implementation of hybrid states (including those in biological systems), and parameters affecting strong coupling. The recent advances in practical applications of strong coupling effects, prospects for their use, and the problems entailed are discussed as well.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Novotny, “Strong coupling, energy splitting, and level crossings: a classical perspective,” Am. J. Phys. 78, 1199–1202 (2010).CrossRefGoogle Scholar
  2. 2.
    B. A. R. Magalhães, A. C. H. Fonseca, and M. C. Nemes, “Classical and quantum coupled oscillators: symplectic structure,” Phys. Scr. 74, 472–480 (2006).CrossRefGoogle Scholar
  3. 3.
    S. Haroche, Fundamental Systems in Quantum Optics (North-Holland, Amsterdam, 1992), Chap. 13, pp. 767–940.Google Scholar
  4. 4.
    J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404–036408 (2004).CrossRefGoogle Scholar
  5. 5.
    S. Haroche, in Fundamental Systems in Quantum Optics, Ed. by J. Dalibard, J. Raimond, and J. Zinn-Justin (Elsevier, New York, 1992), Vol. 53, p.767.Google Scholar
  6. 6.
    A. N. Oraevsky, “Spontaneous emission in a cavity,” Phys. Usp. 37, 393 (1994).CrossRefGoogle Scholar
  7. 7.
    E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681–681 (1946).CrossRefGoogle Scholar
  8. 8.
    E. L. Ivchenko, “Excitonic polaritons in periodic quantum well structures,” Sov. Phys. Solid State 33, 1344–1346 (1991).Google Scholar
  9. 9.
    F. Tassone, F. Bassani, and L. C. Andreani, “Quantum well reflectivity and exciton—polariton dispersion,” Phys. Rev. B 45, 6023–6030 (1992).CrossRefGoogle Scholar
  10. 10.
    A. Kavokin and G. Malpuech, Cavity Polaritons (Elsevier, Amsterdam, 2003), Vol.32.Google Scholar
  11. 11.
    M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Topical review: strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13, 645–669 (1998).CrossRefGoogle Scholar
  12. 12.
    C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton—photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).CrossRefGoogle Scholar
  13. 13.
    R. Houdre, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, “Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments,” Phys. Rev. Lett. 73, 2043–2047 (1994).CrossRefGoogle Scholar
  14. 14.
    V. P. Kochereshko, D. V. Avdoshina, P. Savvidis, S. I. Tsintzos, Z. Hatzopoulos, A. V. Kavokin, L. Besombes, and H. Mariette, “On the condensation of exciton polaritons in microcavities induced by a magnetic field,” Semiconductors 50, 1506 (2016).CrossRefGoogle Scholar
  15. 15.
    A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C. Genet, P. Hellwig, and T. W. Ebbesen, “Enhanced Raman scattering from vibro-polariton hybrid states,” Angew. Chem. Int. Ed. 54, 7971–7975 (2015).CrossRefGoogle Scholar
  16. 16.
    A. P. Saiko, G. G. Fedoruk, and S. A. Markevich, “Decrease in the damping rate of rabi oscillations of artificial atoms at nonresonant excitation,” JETP Lett. 98, 201 (2013).CrossRefGoogle Scholar
  17. 17.
    A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Cambridge Int. Science, Cambridge, 2004).CrossRefGoogle Scholar
  18. 18.
    V. A. Petrovich, S. A. Volchek, and A. V. Bondarenko, “Formation of metal quantum dots on silicon by electrochemical crystallization method,” in Proceedings of the International Conference on Actual Problems of Solid State Physics, Minsk, Belarus, Oct. 26–28, 2005, pp. 371–372.Google Scholar
  19. 19.
    N. M. Correa, H. Zhang, and Z. A. Schelly, “Preparation of AgBr quantum dots via electroporation of vesicles,” J. Am. Chem. Soc. 122, 6432–6434 (2000).CrossRefGoogle Scholar
  20. 20.
    V. S. Dneprovskii, “Exitons cease to be exotic quasiparticles,” Soros. Obrazov. Zh. 6 (8), 88–92 (2000).Google Scholar
  21. 21.
    M. S. Skolnick, D. M. Whittaker, D. Baxter, W. R. Tribe, J. J. Baumberg, V. N. Astratov, R. M. Stevenson, A. Armitage, D. J. Mowbray, and J. S. Roberts, “Exciton polaritons in semiconductor microcavities,” in Proceedings of the 24th International Conference on Physics of Semiconductors, Ed. by D. Gershoni (Jerusalem, 1998), p.25.Google Scholar
  22. 22.
    K. J. Vahala, “Optical microcavities,” Nature 424 (6950), 839–846 (2003).CrossRefGoogle Scholar
  23. 23.
    V. Sandoghdar, M. Agio, X. Chen, S. Götzinger, and K. Lee, Antennas, Quantum Optics and Near-Field Microscopy (Cambridge Univ. Press, Cambridge, 2013), pp. 100–121.Google Scholar
  24. 24.
    R. B. M. Schasfoort and A. J. Tudos, Handbook of Surface Plasmon Resonance (Roy. Soc. Chem., London, 2008).CrossRefGoogle Scholar
  25. 25.
    S. J. Barrow, A. M. Funston, D. E. Gomez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).CrossRefGoogle Scholar
  26. 26.
    D. V. Sotnikov, A. V. Zherdev, and B. B. Dzantiev, “Detection of intermolecular interactions based on registration of surface plasmon resonance,” Usp. Biol. Khim. 55, 391–420 (2015).Google Scholar
  27. 27.
    J. R. Lakowicz, “Plasmonics in biology and plasmoncontrolled fluorescence,” Plasmonics 1, 5–33 (2006).CrossRefGoogle Scholar
  28. 28.
    J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).CrossRefGoogle Scholar
  29. 29.
    O. Tokel, F. Inci, and U. Demirci, “Advances in plasmonic technologies for point of care applications,” Chem. Rev. 114, 5728–5752 (2014).CrossRefGoogle Scholar
  30. 30.
    K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).CrossRefGoogle Scholar
  31. 31.
    C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
  32. 32.
    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).CrossRefGoogle Scholar
  33. 33.
    J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87, 2881–3891 (1991).CrossRefGoogle Scholar
  34. 34.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).Google Scholar
  35. 35.
    F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular,” Angew. Chem., Int. Ed. Engl. 50, 3376–3410 (2011).CrossRefGoogle Scholar
  36. 36.
    D. Melnikau, R. Esteban, D. Savateeva, A. Sánchez-Iglesias, M. Grzelczak, M. K. Schmidt, L. M. Liz-Marzán, J. Aizpurua, and Y. P. Rakovich, “Rabi splitting in photoluminescence spectra of hybrid systems of gold nanorods and j-aggregates,” J. Phys. Chem. Lett. 7, 354–362 (2016).CrossRefGoogle Scholar
  37. 37.
    T. Simon, D. Melnikau, A. Sánchez-Iglesias, M. Grzelczak, L. M. Liz-Marzán, Y. P. Rakovich, J. Feldmann, and A. S. Urban, “Exploring the optical nonlinearities of plasmon-exciton hybryd resonances in coupled colloidal nanostructures,” J. Phys. Chem. C 120, 12226–12233 (2016).CrossRefGoogle Scholar
  38. 38.
    D. E. Gómez, S. S. Lo, T. J. Davis, and G. V. Hartland, “Picosecond kinetics of strongly coupled excitons and surface plasmon polaritons,” J. Phys. Chem. B 117, 4340–4346 (2013).CrossRefGoogle Scholar
  39. 39.
    D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong excitonphoton coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).CrossRefGoogle Scholar
  40. 40.
    H. Wang, H. Wang, A. Toma, T. Yano, Q. Chen, H. Xu, H. Sun, and R. P. Zaccaria, “Dynamics of strong coupling between CdSe quantum dots and surface plasmon polaritons in subwavelength hole array,” J. Phys. Chem. Lett. 7, 4648–4654 (2016).CrossRefGoogle Scholar
  41. 41.
    N. Zhou, M. Yuan, Y. Gao, D. Li, and D. Yang, “Silver nanoshell plasmonically controlled emission of semiconductor quantum dots in the strong coupling regime,” ACS Nano 10, 4154–4163 (2016).CrossRefGoogle Scholar
  42. 42.
    F. Caruso, S. K. Saikin, E. Solano, S. F. Huelga, A. Aspuru-Guzik, and M. B. Plenio, “Probing biological light-harvesting phenomena by optical cavities,” Phys. Rev. B 85, 125424–125434 (2012).CrossRefGoogle Scholar
  43. 43.
    I. Carmeli, I. Lieberman, L. Kraversky, Z. Fan, A. O. Govorov, G. Markovich, and S. Richter, “Broad band enhancement of light absorption in photosystem I by metal nanoparticle antennas,” Nano Lett., No. 10, 2069–2074 (2010).CrossRefGoogle Scholar
  44. 44.
    P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and patterns,” Nature 440, 297–302 (2006).CrossRefGoogle Scholar
  45. 45.
    E. Roller, C. Argyropoulos, A. Högele, T. Liedl, and M. Pilo-Pais, “Plasmon-exciton coupling using DNA templates,” Nano Lett., No. 16, 5962–5966 (2016).CrossRefGoogle Scholar
  46. 46.
    R. J. Kershner, L. D. Bozano, C. M. Micheel, A.M. Hung, A. R. Fornof, J. N. Cha, C. T. Rettner, M. Bersani, J. Frommer, P. W. K. Rothemund, and G. M. Wallraff, “Placement and orientation of individual DNA shapes on lithographically patterned surfaces,” Nat. Nanotechnol. 4, 557–561 (2009).CrossRefGoogle Scholar
  47. 47.
    Q. Jiang, C. Song, J. Nangreave, X. Liu, L. Lin, D. Qiu, Z-G. Wang, G. Zou, X. Liang, H. Yan, and B. Ding, “DNA origami as a carrier for circumvention of drug resistance,” J. Am. Chem. Soc. 134, 13396–13403 (2012).CrossRefGoogle Scholar
  48. 48.
    Y. Zhao, A. Shaw, X. Zeng, E. Benson, A. M. Nyström, and B. Högberg, “DNA origami delivery system for cancer therapy with tunable release properties,” ACS Nano 6, 8684–8691 (2012).CrossRefGoogle Scholar
  49. 49.
    E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, and J. Kjems, “Selfassembly of a nanoscale DNA box with a controllable lid,” Nature 459, 73–76 (2009).CrossRefGoogle Scholar
  50. 50.
    D. M. Coles, Y. Yang, Y. Wang, R. T. Grant, R. A. Taylor, S. K. Saikin, A. Aspuru-Guzik, D. G. Lidzey, J. K. Tang, and J. M. Smith, “Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode,” Nat. Commun. 5, 5561–5569 (2014).CrossRefGoogle Scholar
  51. 51.
    C. P. Dietrich, A. Steude, L. Tropf, M. Schubert, N. M. Kronenberg, K. Ostermann, S. Hofling, and M. C. Gather, “An exciton-polariton laser based on biologically produced fluorescent protein,” Sci. Adv. 2, e1600666–e1600673 (2016).CrossRefGoogle Scholar
  52. 52.
    M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263 (5148), 802–805 (1994).CrossRefGoogle Scholar
  53. 53.
    S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405–126409 (2007).CrossRefGoogle Scholar
  54. 54.
    R. Vergauwe, J. George, T. Chervy, J. A. Hutchison, A. Shalabney, V. Y. Torbeev, and T. W. Ebbesen, “Quantum strong coupling with protein vibrational modes,” J. Phys. Chem. Lett. 7, 4159–4164 (2016).CrossRefGoogle Scholar
  55. 55.
    T. W. Ebbesen, “Hybrid light-matter states in a molecular and material science perspective,” Acc. Chem. Res. 49, 2403–2412 (2016).CrossRefGoogle Scholar
  56. 56.
    A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S.J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbesen, “Ground-state chemical reactivity under vibrational strong coupling to the vacuum electromagnetic field,” Angew. Chem. 128, 11634–11638 (2016).CrossRefGoogle Scholar
  57. 57.
    J. A. Hutchison, C. Genet, T. W. Ebbesen, P. Samori, E. Orgiu, J. George, and F. Stellacci, “Method and device to modify the electrical properties of an organic and/or molecular material,” US Patent Application No. US20160154258A1 (2016).Google Scholar
  58. 58.
    J. George, A. Shalabney, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Liquid-phase vibrational strong coupling,” J. Phys. Chem. Lett. 6, 1027–1031 (2015).CrossRefGoogle Scholar
  59. 59.
    J. Schachenmayer, C. Genes, E. Tignone, and G. Pupillo, “Cavity-enhanced transport of excitons,” Phys. Rev. Lett. 114, 196403–196413 (2015).CrossRefGoogle Scholar
  60. 60.
    J. Feist and F. J. Garcia-Vidal, “Extraordinary exciton conductance induced by strong coupling,” Phys. Rev. Lett. 114, 196402–196407 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Kosmyntseva
    • 1
  • I. R. Nabiev
    • 1
    • 2
    Email author
  • Yu. P. Rakovich
    • 1
    • 3
  1. 1.National Research Nuclear University “MIFI” (Moscow Engineering and Physical Institute)MoscowRussia
  2. 2.Laboratoire de Recherche en Nanosciences, LRN-EA4682Université de Reims, Champagne-ArdennesReimsFrance
  3. 3.Centro de Física de Materiales e Universidad del País VascoDonostia-San SebastiánFrance

Personalised recommendations