Skip to main content
Log in

Influence of a carbon coating on the electrochemical properties of lithium-titanate-based nanosized materials

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The influence of treatment temperature and a carbon precursor on the formation of a Li4Ti5O12-based anodic material and its electrochemical characteristics as part of a lithium-ion battery have been investigated. It is demonstrated that the variation of annealing temperature and the addition of saccharose prior to final annealing allow for the variation of Li4Ti5O12 particle sizes. At annealing temperatures of 400–600°C, lithium titanate forms as part of an anatase titanium oxide composite. Thermogravimetry, Raman spectroscopy, and electrochemical testing results show that a preannealing of the sample at temperatures of no less than 400°C and the addition of saccharose with subsequent annealing in an inert atmosphere are required for the formation of a conducting carbon coating. The formation of the carbon coating facilitates the inclusion of the anatase phase into the charging and discharging processes, which significantly increases the electrochemical capacity of samples obtained at low annealing temperature. The highest electrochemical capacity values (140 mA h/g) of anodic Li4Ti5O12 samples were obtained only after annealing at 800°C. We note the unexpected formation of carbon nanotubes in samples with a final annealing temperatures of 600°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Yugović and D. Uskoković, J. Power Sources 190, 538 (2009).

    Article  Google Scholar 

  2. J. B. Goodenough and K.-S. Park, J. Am. Chem. Soc. 135, 1167 (2013).

    Article  Google Scholar 

  3. A. B. Yaroslavtsev, T. L. Kulova, and A. M. Skundin, Russ. Chem. Rev. 84, 826 (2015).

    Article  Google Scholar 

  4. A. M. Skundin, O. N. Efimov, and O. V. Yarmolenko, Russ. Chem. Rev. 71, 329 (2002).

    Article  Google Scholar 

  5. G. Kucinskis, G. Bajars, and J. Kleperis, J. Power Sources 240, 66 (2013).

    Article  Google Scholar 

  6. M. V. Reddy, G. V. Subba Rao, and B. V. R. Chowdari, Chem. Rev. 113, 5364 (2013).

    Article  Google Scholar 

  7. B. L. Ellis, K. Town, and L. F. Nazar, Electrochim. Acta 84, 145 (2012).

    Article  Google Scholar 

  8. B. Xu, D. Qian, Z. Wang, and Y. S. Meng, Mater. Sci. Eng. R: Rep. 73, 51 (2012).

    Article  Google Scholar 

  9. A. B. Yaroslavtsev, Russ. Chem. Rev. 78, 1013 (2009).

    Article  Google Scholar 

  10. J. Maier, Z. Phys. Chem. 217, 415 (2003).

    Article  Google Scholar 

  11. N. F. Uvarov and V. V. Boldyrev, Russ. Chem. Rev. 70, 265 (2001).

    Article  Google Scholar 

  12. A. B. Yaroslavtsev, Nanotechnol. Russ. 7, 437 (2012).

    Article  Google Scholar 

  13. P. P. Ferguson, A. D. W. Todd, and J. R. Dahn, Electrochem. Commun. 10, 25 (2008).

    Article  Google Scholar 

  14. D. Ahn, X. Xiao, Y. Li, A. K. Sachdev, H. W. Park, A. Yu, and Zh. Chen, J. Power Sources 212, 66 (2012).

    Article  Google Scholar 

  15. D. W. Murphy, R. J. Cava, S. M. Zahurak, and A. Santoro, Solid State Ionics 9–10, 413 (1983).

    Article  Google Scholar 

  16. Z. G. Yang, D. Choi, S. Kerisit, K. M. Rosso, D. H. Wang, J. Zhang, G. Graff, and J. Liu, J. Power Sources 192, 588 (2009).

    Article  Google Scholar 

  17. S. Schamer, W. Weppner, and P. Schmid-Beurmann, J. Electrochem. Soc. 146, 857 (1999).

    Article  Google Scholar 

  18. D. V. Safronov, S. A. Novikova, T. L. Kulova, A. M. Skundin, and A. B. Yaroslavtsev, Inorg. Mater. 48, 57 (2012).

    Article  Google Scholar 

  19. R. P. Vidano and D. B. Fishbach, Solid State Commun. 39, 341 (1961).

    Article  Google Scholar 

  20. S. S. Bukalov, L. A. Makhalitsyn, Ya. V. Zubavichus, L. A. Leites, and Yu. N. Novikov, Ross. Khim. Zh. 1 (1), 83 (2006).

    Google Scholar 

  21. R. Baddour-Hadjean and J.-P. Pereira-Ramos, Chem. Rev. 110, 1278 (2010).

    Article  Google Scholar 

  22. W. J. H. Borghols, M. Wagemaker, U. Lafont, E. M. Kelder, and F. M. Mulder, J. Am. Chem. Soc. 131, 17786 (2009).

    Article  Google Scholar 

  23. U. Lafont, D. Carta, G. Mountjoy, A. V. Chadwick, and E. M. Kelder, J. Phys. Chem. C 114, 1372 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Yaroslavtsev.

Additional information

Original Russian Text © I.A. Stenina, S.S. Bukalov, T.L. Kulova, A.M. Skundin, N.Yu. Tabachkova, A.B. Yaroslavtsev, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenina, I.A., Bukalov, S.S., Kulova, T.L. et al. Influence of a carbon coating on the electrochemical properties of lithium-titanate-based nanosized materials. Nanotechnol Russia 10, 865–871 (2015). https://doi.org/10.1134/S1995078015060130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015060130

Navigation