Skip to main content
Log in

Current state of thermoelectric material science and the search for new effective materials

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The reasons for the recent increased interest in thermoelectricity are considered. Modern thermoelectric materials for practical use are reviewed. Criteria to be met by effective thermoelectric materials are analyzed. It is shown that the solid-solution method has almost completely exhausted itself. Directions in the search for new thermoelectric material classes are analyzed. The development of new bulk thermoelectric materials is connected with the search for and design of materials in which the peculiarities of the structure determine the strong scattering of phonons and decrease in thermal conductivity while maintaining high transport properties of charge carriers. The concept ‘phonon glass–electron crystal’ is of practical interest. Scientific and technological advances over the last decade give hope that more effective thermoelectric materials will be developed in the nearest future. One of the perspective applications of new thermoelectric materials is connected with the development of thermoelectric generators with segmented thermoelectric elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. B. Vining, presentation at a Solutions Summit Panel, in Proceedings of the Conference on Nanotechnology and New Materials, New York, May 1, 2008, pp. 1–10.

  2. A. A. Sherchenkov and Yu. I. Shtern, Physics and Technology of Semiconductor Energy Converters, Pt. 1, The School-Book (MIET, Moscow, 2006) [in Russian].

    Google Scholar 

  3. P. Rodgers, “Silicon goes thermoelectric,” Nature Nanotechnol. 3, 76 (2008).

    Article  Google Scholar 

  4. A. Gulyaev, A. Lapygin, A. Rudnev, and E. Shamanina, “Thermoelectric modules pave the way to ecological clean future,” Elektron. NTB, No. 2 (1999).

  5. C. J. Brinker and D. Ginger, “Nanotechnology for sustainability: energy conversion, storage, and conservation,” in Proceedings of the Conference on Nanotechnology Long-Term Impact and Research Directions: 2000-2020, NSF Headquarters, Arlington, VA, September 30, 2010.

  6. A. F. Ioffe, Semiconductor Thermal Cells (Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  7. G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nature Mater. 7, 108 (2008).

    Article  Google Scholar 

  8. L. D. Zhao, V. P. Dravid, and M. G. Kanatzidis, “The panoscopic approach to high performance thermoelectric,” Energy Environ. Sci. 7, 256–258 (2014).

    Google Scholar 

  9. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects,” Energy Environ. Sci. 2, 468 (2009).

    Article  Google Scholar 

  10. H. J. Goldsmid, “Bismuth telluride and its alloys as materials for thermoelectric generation,” Materials 7, 2577–2592 (2014).

    Article  Google Scholar 

  11. L. L. Baranowski, G. J. Snyder, and E. S. Toberer, “Concentrated solar thermoelectric generators,” Energy Environ. Sci. 5, 9056 (2012).

    Article  Google Scholar 

  12. A. D. LaLonde, Y. Z. Pei, and G. J. Snyder, “Reevaluation of PbTe1-xIx as high performance n-type thermoelectric material,” Energy Environ. Sci. 4, 2090–2096 (2011).

    Article  Google Scholar 

  13. J. Q. He, M. G. Kanatzidis, and V. P. Dravid, “High performance bulk thermoelectrics via a panoscopic approach,” Mater. Today 16, 167 (2013).

    Article  Google Scholar 

  14. R. Zhao, L. Shen, and F. Guo, “Enhanced electrical conductivity in Si80Ge20B0.6 alloys with Er addition prepared by spark plasma sintering,” J. Mater. Res. 26, 1883 (2011).

    Google Scholar 

  15. V. Jovanovic, D. Krommenhoek, S. Ghamaty, and J. C. Bass, “High coefficient of performance quantum well thermoelectric nano cooler,” in Proceedings of IPACK2007, July 8–12, 2007, Vancouver, Britich Columbia, Canada, pp. 1–7.

  16. T. M. Tritt and M. A. Subramanian, “Thermoelectric materials, phenomena, and applications: a bird’s eye view,” MRS Bull. 31, 188–194 (2006).

    Article  Google Scholar 

  17. V. Abryutin, S. Nesterov, V. Roman’ko, and A. Kholopkin, “Application of nanotechnologies for creation of highly effective thermoelectrical materials,” Nanomaterialy 1, 24–26 (2010).

    Google Scholar 

  18. T. Hendricks and W. T. Choate, Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery (US Department of Energy, Industrial Technol. Program, 2006).

    Book  Google Scholar 

  19. D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).

    Article  Google Scholar 

  20. T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of single crystalline semiconducting CoSb3,” J. Appl. Phys. 80, 4442 (1996).

    Article  Google Scholar 

  21. L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, “Experimental study of the effect of quantumwell structures on the thermoelectric figure of merit,” Phys. Rev. B 53, R10493 (1996).

    Article  Google Scholar 

  22. J. Heremans, in Thermoelectric Materials 2003: Research and Applications, Proceedings of the MRS Symposium, Ed. by G. S. Nolas, J. Yang, T. P. Hogan, and D. C. Johnson (Mater. Res. Soc. Press, Pittsburgh, PA, 2004), pp. 3–14.

  23. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, “Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit,” Science 303, 818–821 (2004).

    Article  Google Scholar 

  24. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric materials,” Adv. Mater. 19, 1–12 (2007).

    Article  Google Scholar 

  25. G. Slack, “New materials and performance limits for thermoelectric cooling,” in CRC Handbook of Thermoelectrics, Ed. by D. M. Rowe (CRC, Boca Raton, 1995).

    Google Scholar 

  26. C. Yu, X. Zhang, M. Leng, A. Shaga, D. Liu, F. Chen, and C. Wang, “Preparation and thermoelectric properties of inhomogeneous bismuth telluride alloyed nanorods,” J. Alloy. Compd. 570, 86–93 (2013).

    Article  Google Scholar 

  27. G. S. Nolas, J. Poon, and M. Kanatzidis, “Recent developments in bulk thermoelectric materials,” MRS Bull. 31, 199–205 (2006).

    Article  Google Scholar 

  28. E. Quarez, K. F. Hsu, R. Pcionek, N. Frangis, E. K. Polychroniadis, and M. G. Kanatzidis, “Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPbmSbTe2+m. The myth of solid solutions,” J. Am. Chem. Soc. 127, 9177–9190 (2005).

    Article  Google Scholar 

  29. P. F. P. Poudeu, J. D. Angelo, A. D. Downey, J. L. Short, T. P. Hogan, and M. G. Kanatzidis, “High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-x PbmSbyTem+2,” Angew. Chem., Int. Ed. Engl. 45, 3835–3839 (2006).

    Article  Google Scholar 

  30. L. G. Zhao, S. H. Lo, Y. S. Zhang, H. Sun, G. J. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature 508, 373–378 (2014).

    Article  Google Scholar 

  31. P. Litvinchuk, J. Nylén, B. Lorenz, A. M. Guloy, and U. Häussermann, “Optical and electronic properties of metal doped thermoelectric Zn4Sb3,” J. Appl. Phys. 103, 123524 (2008).

    Article  Google Scholar 

  32. A. Tenga, “Thermoelectric properties of antimony based networks,” Doctoral Thesis (Stockholm, Univ., Sweden, 2010).

    Google Scholar 

  33. S. Sugihara, “The measurement of thermoelectricity,” in Materials for Energy Conversion Devices, Ed. by C. Sorrell, S. Sugihara, and J. Nowotny (Woodhead Publ. Materials, Cambridge, 2005), chap. 14, pp. 359–364.

    Google Scholar 

  34. H. Ohta, “Thermoelectrics based on strontium titanate,” Mater. Today 10, 44–49 (2007).

    Article  Google Scholar 

  35. J. Tervo, A. Manninen, R. Ilola, and H. Hänninen, State-of-the-Art of Thermoelectric Materials Processing, VTT Working Papers No. 124 (VTT Tech. Res. Centre, Finland, 2009).

    Google Scholar 

  36. D. Y. Chung, T. P. Hogan, M. Rocci-Lane, P. Brazis, J. R. Ireland, C. R. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, “A new thermoelectric material: CsBi4Te6,” J. Am. Chem. Soc. 126, 6414–6428 (2004).

    Article  Google Scholar 

  37. J. Schilz, L. Helmers, Y. S. Yang, Y. Noda, and M. Niino, “Bismuth-telluride/iron-disilicide segmented thermoelectric elements: patterning, preparation and properties,” in Proceedings of the 14th International Conference on Thermoelectrics, August 26–29, 1997, Dresden, Germany.

  38. T. Caillat, J-P. Fleurial, G. J. Snyder, A. Zoltan, D. Zoltan, and A. Borshchevsky, “A new high efficiency segmented thermoelectric unicouple,” in Proceedings of the 34th Intersociety Energy Conversion Engineering Conference, 1999, pp. 2567–2570.

  39. J.-P. Fleurial, A. Borshchevsky, and T. Caillat, “New thermoelectric materials and devices for terrestrial power generators,” in Proceedings of the 1st Conference on Synergistic Power and Propulsion Systems Technology, Ed. by M. S. El-Genk, AIP Conf. Proc. 387, 293–298 (1997).

    Google Scholar 

  40. J.-P. Fleurial, A. Borshchevsky, T. Caillat, and R. Ewell, “New materials and devices for thermoelectric applications,” in Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference (Amer. Inst. Chem. Eng., New York, 1997), pp. 1080–1085.

    Google Scholar 

  41. T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Development of high efficiency thermoelectric generators using advanced materials,” in Proceedings of the 15th Symposium on Space Nuclear Power and Propulsion, Ed. by M. S. El-Genk, AIP Conf. Proc. 420, 1647–1651 (1998).

    Article  Google Scholar 

  42. T. Caillat, J.-P. Fleurial, G. J. Snyder, A. Zoltan, D. Zoltan, and A. Borshchevsky, “Progress in the development of high efficiency segmented thermoelectric generators,” in Proceedings of the 16th Symposium on Space Nuclear Power and Propulsion, Ed. by M. S. El-Genk, AIP Conf. Proc. 458, 1403–1408 (1999).

    Article  Google Scholar 

  43. M. L. Olsen, E. L. Warren, P. A. Parilla, E. S. Toberer, C. E. Kennedy, G. J. Snyder, S. A. Firdosy, B. Nesmith, A. Zakutayev, A. Goodrich, C. S. Turchi, J. Netter, M. H. Gray, P. F. Ndione, R. Tirawat, et al., “A high-temperature, high-efficiency solar thermoelectric generator prototype,” Energy Proc. 49, 1460–1469 (2014).

    Article  Google Scholar 

  44. T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Development of high efficiency thermoelectric generators using advanced materials,” in Proceedings of the 15th Symposium on Space Nuclear Power and Propulsion, Ed. by M. S. El-Genk, AIP Conf. Proc. 420, 1647–1651 (1998).

    Article  Google Scholar 

  45. B. W. Swanson, E. V. Somers, and R. R. Heikes, “Optimization of a sandwiched thermoelectric device,” J. Heat Transfer, 77–82 (1961).

    Google Scholar 

  46. T. Caillat, S. Firdosy, B. C.-Y. Li, C.-K. Huang, B. Cheng, J. Paik, J. Chase, T. Arakelian, L. Lara, and J.-P. Fleurial, “Progress status of the development of high-efficiency segmented thermoelectric couples,” in Proceedings of the Topical Meeting on Nuclear and Emerging Technologies for Space NETS-2012, The Woodlands, Texas Venue, March 21–23, 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sherchenkov.

Additional information

Original Russian Text © A.A. Sherchenkov, Yu.I. Shtern, R.E. Mironov, M.Yu. Shtern, M.S. Rogachev, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherchenkov, A.A., Shtern, Y.I., Mironov, R.E. et al. Current state of thermoelectric material science and the search for new effective materials. Nanotechnol Russia 10, 827–840 (2015). https://doi.org/10.1134/S1995078015060117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015060117

Keywords

Navigation