Skip to main content
Log in

Formation of micro/nanostructured AlOOH hollow spheres from aluminum nanoparticles

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Micro/nanostructured AlOOH hollow spheres have been obtained via one-step synthesis. Spherical aluminum nanoparticles coated with amorphous oxide film are used as a precursor. Hollow spheres of AlOOH are formed during the oxidation of aluminum nanoparticles with water. In order to study the evolution of hollow spheres, electron microscopy studies of the reaction intermediates at various stages of the process are carried out. Micro/nanostructured AlOOH hollow spheres have a diameter of 500–800 nm, and their shells consist of boehmite nanosheets with a planar size of 200–300 nm and a thickness of 2–10 nm. It is shown that the formation of AlOOH hollow spheres occurs through dissolution of aluminum core, the diffusion of Al3+ ions through the surface oxide film, and the formation of islands of amorphous Al(OH)3 at the particle–water interface. Further, the formation and growth of AlOOH nanosheets and the formation of a porous shell from nanosheets take place. As a result, the oxide film serves as a substrate for growth of boehmite nanosheets and the formation of micro/nanostructured AlOOH hollow sphere. Morphology and physicochemical properties of the hollow spheres are characterized by transmission and scanning electron microscopy, X-ray diffraction, energy-dispersive analysis, and low-temperature nitrogen adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Tang, Y. Liu, G. Li, et al., Mater. Res. Bull. 47, 3177 (2012).

    Article  Google Scholar 

  2. A. Chen, Y. Yu, H. Lv, et al., Mater. Lett. 135, 43 (2014).

    Article  Google Scholar 

  3. S. Ren, Y. Yang, M. Xu, et al., Colloids Surf. 444, 26 (2014).

    Article  Google Scholar 

  4. Y. Yan, Q. Liu, J. Wang, et al., Powder Technol. 232, 134 (2012).

    Article  Google Scholar 

  5. H. G. Yu, J. G. Yu, S. W. Liu, and S. Mann, Chem. Mater. 19, 4327 (2007).

    Article  Google Scholar 

  6. Y. Liu, X. Tan, and K. Li, Ind. Eng. Chem. Res. 45, 142 (2006).

    Article  Google Scholar 

  7. M. Arruebo, M. Galán, N. Navascués, et al., Chem. Mater. 18, 1911 (2006).

    Article  Google Scholar 

  8. T. Nakashima and N. Kimizuka, J Am. Chem. Soc. 125, 6386 (2003).

    Article  Google Scholar 

  9. S. W. Cao, Y. J. Zhu, M. Y. Ma, et al., J. Phys. Chem. 112, 1851 (2008).

    Google Scholar 

  10. S. Peng and S. Sun, Angew. Chem., Int. Ed. Engl. 46, 4155 (2007).

    Article  Google Scholar 

  11. W. Wang, M. Dahl, and Y. Yin, Chem. Mater. 25, 1179 (2013).

    Article  Google Scholar 

  12. X. B. Wang, W. P. Cai, G. Z. Wang, and C. H. Liang, J. Mater. Res. 27, 951 (2012).

    Google Scholar 

  13. J. Liu and G. K. Zhang, Mater. Sci. Eng. 193, 198 (2015).

    Article  Google Scholar 

  14. W. Zeng, T. M. Li, T. F. Li, et al., J. Mater. Sci. 26, 1192 (2015).

    Google Scholar 

  15. Y. J. Hu, C. Z. Li, F. Gu, and J. Ma, Ind. Eng. Chem. Res. 46, 8004 (2007).

    Article  Google Scholar 

  16. D. H. M. Buchold and C. Feldmann, Nano Lett. 7, 3489 (2007).

    Article  Google Scholar 

  17. X. Y. Wu, D. B. Wang, Z. S. Hu, and G. H. Gu, Mater. Chem. Phys. 109, 560 (2008).

    Article  Google Scholar 

  18. X. Wu, B. Zhang, D. Wang, and Z. Hu, Mater. Lett. 70, 128 (2012).

    Article  Google Scholar 

  19. L. Zhang, W. Lu, R. Cui, and S. Shen, Mater. Res. Bull. 45, 429 (2010).

    Article  Google Scholar 

  20. W. Cai, S. Chen, Y. Jiaguo, et al., Mater. Chem. Phys. 138, 167 (2013).

    Article  Google Scholar 

  21. M. I. Lerner, N. V. Svarovskaya, S. G. Psakhie, and O. V. Bakina, Nanotechnol. Russ. 4, 741 (2009).

    Article  Google Scholar 

  22. N. V. Svarovskaya, O. V. Bakina, E. A. Glazkova, et al., Russ. J. Phys. Chem. 84, 1566–1569 (2010).

    Article  Google Scholar 

  23. Y. Yang and J. G. Zhou, Int. J. Hydrogen Energy 39, 18734 (2014).

    Article  Google Scholar 

  24. W. Z. Gai and Z. Y. Deng, Int. J. Hydrogen Energy 39, 13491 (2014).

    Article  Google Scholar 

  25. V. Rosenband and A. Gany, Int. J. Hydrogen Energy 35, 10898 (2010).

    Article  Google Scholar 

  26. Z. Y. Deng, J. M. F. Ferreiraw, Y. Tanaka, and J. H. Ye, J. Am. Ceram. Soc. 90, 1521 (2007).

    Article  Google Scholar 

  27. R. Sarathi, B. Sankar, and S. R. Chakravarthy, J. Electric. Eng. 61, 215 (2010).

    Article  Google Scholar 

  28. V. G. Ivanov, M. N. Safronov, and O. V. Gavrilyuk, Combust. Explos. Shock Waves 37, 173 (2001).

    Article  Google Scholar 

  29. GOST (State Standard) No. 5494–95: Aluminium Powder. Technical Conditions.

  30. S. F. Tikhov, V. E. Romanenkov, V. A. Sadykov, V. N. Parmon, and A. I. Rat’ko, Porous Composites on the Basis of Oxide-Aluminum Cermets (Synthesis and Properties) (Sib. Otdel. RAN, Geo, Novosibirsk, 2004) [in Russian].

    Google Scholar 

  31. V. E. Romanenkov and E. E. Petyushik, Physicochemical Principles of Hydration Hardening of Powder Media (Belarus. Nauka, Minsk, 2012) [in Russian].

    Google Scholar 

  32. G. D. Chukin, Structure of Aluminum Oxide and Hydrodesulfurization Catalysts. Mechanisms of Reactions (Paladin, Printa, Moscow, 2010) [in Russian].

    Google Scholar 

  33. C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations (Wiley Interscience, New York, 1976).

    Google Scholar 

  34. B. C. Bunker, G. C. Nelson, K. R. Zavadil, et al., J. Phys. Chem. 106, 4705 (2002).

    Article  Google Scholar 

  35. R. S. Alwitt, “The aluminum-water system,” in Oxides and Oxide Films, Ed. by M. Dekker (J. W. Diggle, New York, 1976), pp. 171–254.

    Google Scholar 

  36. W. Cai, G. Duan, and Y. Li, Hierarchical Micro/Nanostructured Materials: Fabrication, Properties, and Applications (CRC, Boca Raton, FL, 2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Lozhkomoev.

Additional information

Original Russian Text © A.S. Lozhkomoev, E.A. Glazkova, S.O. Kazantsev, I.A. Gorbikov, O.V. Bakina, N.V. Svarovskaya, A.A. Miller, M.I. Lerner, S.G. Psakhie, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozhkomoev, A.S., Glazkova, E.A., Kazantsev, S.O. et al. Formation of micro/nanostructured AlOOH hollow spheres from aluminum nanoparticles. Nanotechnol Russia 10, 858–864 (2015). https://doi.org/10.1134/S1995078015060075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015060075

Keywords

Navigation