Skip to main content
Log in

Shape determination of polydisperse and polymorphic nanoobjects from small-angle X-ray scattering data (Computer simulation)

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The most complete information about the structure of scattering objects from small-angle X-ray scattering (SAXS) data can be obtained basically for monodisperse systems of noninteracting particles. However, often in practice samples contain also a certain amount of aggregates and clusters that cannot be removed by conventional methods of purification, being the essential properties of the investigated objects. Moreover, the flexibility and intrinsic disordering of some samples also leads to difficulties of SAXS data interpretation and structural analysis. The most important questions that arise in these cases are the possibility of the structural reconstruction in general and the final reliability of the obtained models. In the current work we analyze the results of the shape determination of different geometrical bodies in the presence of polydispersity and in the presence of various amounts of aggregates, the shape determination of structurally polymorphic particles, and the shape reconstruction of geometrical bodies which are parts of their associates. The results of a series of numerical experiments allows us to describe the conditions and limits of such restorations, as well as to show some key approaches which may increase the stability of the shape reconstruction and reveal typical artifacts in the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays (John Wiley and Sons, New York, 1955).

    Google Scholar 

  2. O. Glatter, J. Appl. Crystallogr. 10, 415–421 (1977).

    Article  Google Scholar 

  3. O. Glatter and O. Kratky, Small-Angle X-Ray Scattering (Acad. Press, London, 1982).

    Google Scholar 

  4. L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum Press, New York, 1987).

    Book  Google Scholar 

  5. V. V. Volkov and D. I. Svergun, J. Appl. Crystallogr. 36, 860–864 (2003).

    Article  Google Scholar 

  6. D. I. Svergun, J. Appl. Crystallogr. 25, 495 (1992).

    Article  Google Scholar 

  7. M. V. Petoukhov, D. Franke, A. V. Shkumatov, G. Tria, A. G. Kikhney, M. Gajda, C. Gorba, H. D. T. Mertens, P. V. Konarev, and D. I. Svergun, J. Appl. Crystallogr. 45, 342–350 (2012).

    Article  Google Scholar 

  8. D. I. Svergun, C. Barberato, and M. H. J. Koch, J. Appl. Crystallogr. 28, 768–773 (1995).

    Article  Google Scholar 

  9. D. I. Svergun, Biophys. J. 76, 2879–2886 (1999).

    Article  Google Scholar 

  10. P. Chacón, F. Morán, J. F. Díaz, E. Pantos, and J. M. Andreu, Biophys. J. 74(6), 2760–2775 (1998).

    Article  Google Scholar 

  11. P. V. Konarev, M. V. Petoukhov, and D. I. Svergun, J. Appl. Cryst. 34, 527–532 (2001).

    Article  Google Scholar 

  12. E. V. Shtykova, L. A. Baratova, N. V. Fedorova, A. L. Ksenofontov, V. V. Volkov, A. V. Shishkov, A. A. Dolgov, V. A. Radyukhin, and D. I. Svergun, PLoS One 8(12), e82431 (2013). doi: doi 10.1371/journal.pone.0082431

    Article  Google Scholar 

  13. M. B. Kozin and D. I. Svergun, J. Appl. Crystallogr. 34, 33–41 (2001).

    Article  Google Scholar 

  14. E. V. Shtykova, E. V. Shtykova, Jr., V. V. Volkov, P. V. Konarev, A. T. Dembo, E. E. Makhaeva, A. R. Khokhlov, I. A. Ronova, H. Reynaers, and D. I. Svergun, J. Appl. Crystallogr. 36, 669–673 (2003).

    Article  Google Scholar 

  15. L. M. Bronstein, S. N. Sidorov, V. Zhirov, D. Zhirov, Y. A. Kabachii, S. Y. Kochev, P. M. Valetsky, B. Stein, O. I. Kiseleva, S. N. Polyakov, E. V. Shtykova, E. V. Nikulina, D. I. Svergun, and A. R. Khokhlov, J. Phys. Chem. B 109, 18786–18798 (2005).

    Article  Google Scholar 

  16. L. M. Bronstein, M. Kostylev, E. Shtykova, T. Vlahu, X. Huang, B. D. Stein, A. Bykov, N. B. Remmes, D. V. Baxter, and D. I. Svergun, Langmuir 24(21), 12618–12626 (2008).

    Article  Google Scholar 

  17. E. V. Shtykova, K. A. Dembo, V. V. Volkov, E. E. Said-Galiev, A. I. Stakhanov, and A. R. Khokhlov, Nanotech. Russ. 4(9–10), 700–710 (2009).

    Article  Google Scholar 

  18. M. V. Petoukhov and D. I. Svergun, Biophys. J. 89, 1237–1250 (2005).

    Article  Google Scholar 

  19. H. D. Mertens and D. I. Svergun, J. Struct. Biol. 172(1), 128–141 (2010).

    Article  Google Scholar 

  20. P. Bernado, E. Mylonas, M. V. Petoukhov, M. Blackledge, and D. I. Svergun, J. Am. Chem. Soc. 129, 5656–5664 (2007).

    Article  Google Scholar 

  21. P. Bernado and D. I. Svergun, Mol. Biosyst. 8(1), 151–167 (2012).

    Article  Google Scholar 

  22. I. Bertini, A. Giachetti, C. Luchinat, G. Parigi, M. V. Petoukhov, R. Pierattelli, E. Ravera, and D. I. Svergun, J. Am. Chem. Soc. 132, 13553–13558 (2010).

    Article  Google Scholar 

  23. A. Tardieu, “Neutron and synchrotron radiation for condensed matter studies,” in Applications to Soft Condensed Matter and Biology, vol. 3: Les editions de Physique (France) (Springer, Berlin, 1994).

    Google Scholar 

  24. Y. Liu, W.-R. Chen, and S.-H. Chen, J. Chem. Phys. 122, 044507 (2005).

    Article  Google Scholar 

  25. D. I. Svergun, J. Appl. Crystallogr. 40, 10–17 (2007).

    Article  Google Scholar 

  26. A. Shukla, E. Mylonas, E. Di Cola, S. Finet, P. Timmins, T. Narayanan, and D. I. Svergun, Proc. Nat. Acad. Sci. 105(13), 5075–5080 (2008).

    Article  Google Scholar 

  27. D. I. Svergun and M. H. J. Koch, Rep. Prog. Phys. 66(10), 1735–1782 (2003).

    Article  Google Scholar 

  28. E. V. Shtykova, X. Huang, N. Remmes, D. Baxter, B. Stein, B. Dragnea, D. I. Svergun, and L. M. Bronstein, J. Phys. Chem. 111(49), 18078 (2007).

    Google Scholar 

  29. E. V. Shtykova, X. Gao, X. Huang, J. C. Dyke, A. L. Schmucker, N. Remmes, D. V. Baxter, B. Stein, B. Dragnea, P. V. Konarev, D. I. Svergun, and L.M. Bronstein, J. Phys. Chem. 112(43), 16809–16817 (2008).

    Google Scholar 

  30. L. M. Bronstein, E. V. Shtykova, A. Malyutin, J. C. Dyke, E. Gunn, X. Gao, B. Stein, P. V. Konarev, B. Dragnea, and D. I. Svergun, J. Phys. Chem. C 114(50), 21900–21907 (2010).

    Article  Google Scholar 

  31. E. V. Shtykova, A. Malyutin, J. Dyke, B. Stein, P.V. Konarev, B. Dragnea, D. I. Svergun, and L. M. Bronstein, J. Phys. Chem. C 114(50), 21908–21913 (2010).

    Article  Google Scholar 

  32. E. V. Shtykova, N. V. Kuchkina, Z. B. Shifrina, L.M. Bronstein, and D. I. Svergun, J. Phys. Chem. C 116, 8069–8078 (2012).

    Article  Google Scholar 

  33. S. G. Skuridin, V. A. Dubinskaya, E. V. Shtykova, V. V. Volkov, V. M. Rudoy, O. V. Dement’eva, V. A. Kuzmin, E. S. Lisitsyna, S. T. Zakhidov, I. A. Zelenina, and Yu. M. Yevdokimov, Biochem. Suppl. Ser. A: Membrane Cell Biol. 5(2), 191–197 (2011).

    Article  Google Scholar 

  34. Yu. M. Yevdokimov, E. V. Shtykova, V. I. Salyanov, and S. G. Skuridin, Biophysics 58(2), 148–156 (2013).

    Article  Google Scholar 

  35. S. G. Skuridin, V. I. Salyanov, V. I. Popenko, E. V. Shtykova, E. S. Lisitsyna, V. A. Dubinskaya, V. A. Bykov, and Yu. M. Evdokimov, Pharm. Chem. J. 47(2), 71–79 (2013).

    Article  Google Scholar 

  36. Yu. M. Yevdokimov, S. G. Skuridin, V. I. Salyanov, V. I. Popenko, E. V. Shtykova, L. A. Dadinova, V. V. Volkov, N. G. Khlebtsov, B. N. Khlebtsov, and E. I. Kats, Nanotech. Russ. 9(3) (2014).

    Google Scholar 

  37. A. N. Ozerin, T. S. Kurkin, L. A. Ozerina, and V. Yu. Dolmatov, Crystallogr. Rep. 53(1), 60–67 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Shtykova.

Additional information

Original Russian Text © E.V. Shtykova, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtykova, E.V. Shape determination of polydisperse and polymorphic nanoobjects from small-angle X-ray scattering data (Computer simulation). Nanotechnol Russia 10, 408–419 (2015). https://doi.org/10.1134/S1995078015030155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015030155

Keywords

Navigation