Skip to main content
Log in

Modeling interorgan distribution and bioaccumulation of engineered nanoparticles (using the example of silver nanoparticles)

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

In this paper we demonstrate the validity of a mathematical chamber model to describe the absorption, distribution, and bioaccumulation of nonmetabolizable nanoparticles (NPs) using the example of silver NPs in the organism of laboratory rat. The model is constructed using experimental data on the bioaccumulation and biodistribution of silver NPs of average diameter of 35 ± 15 nm (M ± SD) radiolabeled with 110mAg. In the minimally acceptable form, the model includes all “chambers” in which NP level in the course of the experiment was no lower than 20–25% of its blood content, namely, the gastrointestinal tract (GIT), blood itself, osteomuscular carcass, liver, and spleen. NP bioaccumulation and biodistribution in these chambers is described by five independent linear differential equations of the 1st order. A numerical solution of this system of equations, with account for the data on timing of NP excretion from the GIT in the content of feces, makes it possible to determine the biokinetic rate constants for the interorgan transfer of NPs. These rate constants are used to establish the dose-dependence of the peak (maximum) and quasi-stationary NP content in critical target organs, respectively, in the case of acute (single) and subchronic (repeated) administration of NP in the gastrointestinal tract. The results justify the value of the method of mathematically modeling the interstitial transport and distribution of NPs to assess their potential toxic effects on a system level using previously obtained in vitro data and results from biokinetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Onishchenko and V. A. Tutel’yan, “On toxicological researches, ways to estimate risks, to identify and determinate quantitavely nanomaterials,” Vopr. Pitan. 76 (6), 4–8 (2007).

    Google Scholar 

  2. G. G. Onishchenko, A. I. Archakov, V. V. Bessonov, B.G. Bokit’ko, A. L. Gintsburg, I. V. Gmoshinskii, A. I. Grigor’ev, N. F. Izmerov, M. P. Kirpichnikov, B. S. Naroditskii, V. I. Pokrovskii, A. I. Potapov, Yu. A. Rakhmanin, V. A. Tutel’yan, S. A. Khotimchenko, K. V. Shaitan, and S. A. Sheveleva, “Methodological approaches for estimating nanomaterials safety,” Gig. Sanit., No. 6, 3–10 (2007).

    Google Scholar 

  3. I. V. Gmoshinskii, V. V. Smirnova, and S. A. Khotimchenko, “Nanomaterials safety estimation: state of the art,” Ross. Nanotekhnol. 5 (9–10), 6–10 (2010).

    Google Scholar 

  4. P. J. Borm, D. Robbins, S. Haubold, T. Kuhlbusch, H. Fissan, K. Donaldson, R. Schins, V. Stone, W. Kreyling, J. Lademann, J. Krutmann, D. Warheit, and E. Oberdorster, “The potential risks of nanomaterials: a review carried out for ECETOC,” Part. Fibre Toxicol. 3 (11), 135 (2006).

    Google Scholar 

  5. G. Oberdörster, A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, S. Olin, N. Monteiro-Riviere, D. Warheit, and H. Yang, “Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy,” Part. Fibre Toxicol. 2 (1), 843 (2005).

    Article  Google Scholar 

  6. G. Oberdörster, E. Oberdorster, and J. Oberdorster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environ. Health Perspect. 113, 823–839 (2005).

    Article  Google Scholar 

  7. S. A. Khotimchenko, I. V. Gmoshinskii, and V. A. Tutel’yan, “The way to secure nanosized objects safety for human’s health,” Gig. Sanit., No. 5, 7–11 (2009).

    Google Scholar 

  8. V. M. Vernikov, I. V. Gmoshinskii, and S. A. Khotimchenko, “Ag nanoparticles in nature, industry, packaging materials for foodstuff: possible risks,” Vopr. Pitan. 78 (6), 13–20 (2009).

    Google Scholar 

  9. L. B. Piotrovskii and O. I. Kiselev, Fullerens in Biology (St. Petersburg, 2006) [in Russian].

    Google Scholar 

  10. J. M. Balbus, A. D. Maynard, V. L. Colvin, V. Castranova, G. P. Daston, R. A. Denison, K. L. Dreher, P. L. Goering, A. M. Goldberg, K. M. Kulinowski, N. A. Monteiro-Riviere, G. Oberdörster, G. S. Omenn, K. E. Pinkerton, K. S. Ramos, K. M. Rest, J. B. Sass, E. K. Silbergeld, and B. A. Wong, “Meeting report: hazard assessment for nanoparticles — report from an interdisciplinary workshop,” Environ. Health Perspect. 115 (11), 1654–1659 (2007).

    Article  Google Scholar 

  11. G. Oberdorster, E. Oberdorster, and J. Oberdorster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environ. Health Perspect. 113, 823–839 (2005).

    Article  Google Scholar 

  12. Yu. P. Buzulukov, I. V. Gmoshinskii, R. V. Raspopov, V. F. Demin, V. Yu. Solov’ev, P. G. Kuz’min, G. A. Shafeev, and S. A. Khotimchenko, Med. Radiol. Radiats. Bezopasn. 57 (3), 5–12 (2012).

    Google Scholar 

  13. R. V. Raspopov, Yu. P. Buzulukov, N. S. Marchenkov, V. Yu. Solov’ev, V. F. Demin, V. S. Kalistratova, I. V. Gmoshinskii, and S. A. Khotimchenko, “Zn oxide nanoparticles bioaccessibility. The way to research by means of radioactive indicators,” Vopr. Pitan. 79 (6), 14–18 (2010).

    Google Scholar 

  14. E. A. Melnik, Yu. P. Buzulukov, V. F. Demin, V. A. Demin, I. V. Gmoshinski, N. V. Tyshko, and V. A. Tutelyan, “Transfer of silver nanoparticles through the placenta and breast milk during in vivo experiments on rats,” Acta Natur. 5 (3(18)), 48–56 (2013).

    Google Scholar 

  15. Yu. P. Buzulukov, E. A. Arianova, V. F. Demin, I. V. Safenkova, I. V. Gmoshinski, and V. A. Tutelyan, “Bioaccumulation of silver and gold nanoparticles in organs and tissues of rats studied by neutron activation analysis,” Biol. Bull. 41 (3), 255–263 (2014).

    Article  Google Scholar 

  16. K. Pinna, L. R. Woodhouse, B. Sutherland, D. M. Shames, and J. C. King, “Exchangeable zinc pool masses and tuirnover are maintained in healthy man with low zinc intakes,” J. Nutr. 131 (9), 2288–2294 (2001).

    Google Scholar 

  17. M. Janghorbani, R. F. Martin, L. J. Kasper, X. F. Sun, and V. R. Young, “The selenite-exchangeable pool in humans: a new concept for the assessment of selenium status,” Am. J. Clin. Nutr. 51 (4), 670–677 (1990).

    Google Scholar 

  18. I. V. Gmoshinskii, T. Yu. Verina, V. K. Mazo, and I. A. Morozov, “Gastrointestinal tract barrier permeability for polyethylene glycol-4000 macromolecules: the way to estimate mechanism and repeatability,” Byull. Eksperim. Biol. Med. 114 (11), 532–534 (1992).

    Google Scholar 

  19. S. M. Hussain, K. L. Hess, J. M. Gearhart, K. T. Geiss, and J. J. Schlager, “In vitro toxicity of nanoparticles in BRL 3A rat liver cells,” Toxicol. in vitro 9 (7), 975–983 (2005).

    Article  Google Scholar 

  20. L. Braydich-Stolle, S. Hussain, J. J. Schlager, and M. C. Hofmann, “In vitro cytotoxicity of nanoparticles in mammalian germline stem cells,” Toxicol. Sci. 88 (2), 412–419 (2005).

    Article  Google Scholar 

  21. S. Arora, J. Jain, J. M. Rajwade, and K. M. Paknikar, “Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells,” Toxicol. Appl. Pharmacol. 236 (3), 310–318 (2009).

    Article  Google Scholar 

  22. Z. Liu, G. Ren, T. Zhang, and Z. Yang, “Action potential changes associated with the inhibitory effects on voltage-gated sodium current of hippocampal CA1 neurons by silver nanoparticles,” Toxicology 264 (3), 179–184 (2009).

    Article  Google Scholar 

  23. S. H. Shin, M. K. Ye, H. S. Kim, and H. S. Kang, “The effects of nanosilver on the proliferation and cytokine expression by peripheral blood mononuclear cells,” Int. Immunopharmacol. 7 (13), 1813–1818 (2007).

    Article  Google Scholar 

  24. C. M. Powers, A. R. Badireddy, I. T. Ryde, F. J. Seidler, and T. A. Slotkin, “Silver nanoparticles compromise neurodevelopment in PC12 cells: critical contributions of silver ion, particle size, coating, and composition,” Environ. Health Perspect. 119 (1), 37–44 (2011).

    Article  Google Scholar 

  25. A. Haase, S. Rott, A. Mantion, P. Graf, J. Plendl, A. F. Thünemann, W. P. Meier, A. Taubert, A. Luch, and G. Reiser, “Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses,” Toxicol. Sci. 126 (2), 457–468 (2012).

    Article  Google Scholar 

  26. A. A. Shumakova, V. V. Smirnova, O. N. Tananova, E. N. Trushina, L. V. Kravchenko, I. V. Aksenov, A. V. Selifanov, Kh. S. Soto, G. G. Kuznetsova, A. V. Bulakhov, I. V. Safenkova, I. V. Gmoshinskii, and S. A. Khotimchenko, “Toxicological hygienic characteristics of Ag nanoparticles introduces into rat gastrointestinal tract,” Vopr. Pitan. 80 (6), 9–18 (2011).

    Google Scholar 

  27. Y. S. Kim, M. Y. Song, J. D. Park, K. S. Song, H.R. Ryu, Y. H. Chung, H. K. Chang, J. H. Lee, K. H. Oh, B. J. Kelman, I. K. Hwang, and I. J. Je Yu, “Subchronic oral toxicity of silver nanoparticles,” Part. Fibre Toxicol. 7 (1), 20 (2010).

    Article  Google Scholar 

  28. K. C. Bhol and P. J. Schechter, “Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis,” Dig. Dis. Sci. 52 (10), 2732–2742 (2007).

    Article  Google Scholar 

  29. E. Sawosz, M. Binek, M. Grodzik, M. Zielinska, P. Sysa, M. Szmidt, T. Niemiec, and A. Chwalibog, “Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails,” Arch. Anim. Nutr. 61 (6), 444–451 (2007).

    Article  Google Scholar 

  30. K. Loeschner, N. Hadrup, K. Qvortrup, A. Larsen, X.Gao,_U. Vogel, A. Mortensen, H. R. Lam, and E. H. Larsen, “Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver actate,” Part. Fibre Toxicol. 8, 18 (2011).

    Article  Google Scholar 

  31. T. A. Platonova, S. M. Pridvorova, A. V. Zherdev, L. S. Vasilevskaya, E. A. Arianova, I. V. Gmoshinskii, S. A. Khotimchenko, B. B. Dzantiev, V. O. Popov, and V. A. Tutel’yan, “The way to identify Ag nanoparticles in tissues of rat mucous membrane of the small intestine, of liver and spleen by means of transmission electronic microscopy,” Byul. Eksperim. Biol. Med. 155 (2), 204–209 (2013).

    Article  Google Scholar 

  32. M. Van der Zande, R. J. Vanderbriel, E. Van Doren, E. Kramer, Z. Herrera Rivera, C. S. Serano-Rojero, E. R. Gremmer, J. Mast, R. J. Peters, P. C. Hollman, P. J. Hendriksen, H. J. Marvin, A. A. Peijnenburg, and H. Bouwmeester, “Distribution, elimination and toxicity of silver nanoparticles and silver ions in rats after 28-day exposure,” ACS Nano 6 (8), 7427–7442 (2012).

    Article  Google Scholar 

  33. M. Semmler, J. Seitz, and F. Erbe, “Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs,” Inhal. Toxicol. 16 (6–7), 453–459 (2004).

    Article  Google Scholar 

  34. J. Pelka, H. Gehrke, and M. Esselen, “Cellular uptake of platinum nanoparticles in human colon carcinoma cells and their impact on cellular redox systems and DNA integrity,” Chem. Res. Toxicol. 22 (4), 649–659 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Gmoshinsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demin, V.A., Gmoshinsky, I.V., Demin, V.F. et al. Modeling interorgan distribution and bioaccumulation of engineered nanoparticles (using the example of silver nanoparticles). Nanotechnol Russia 10, 288–296 (2015). https://doi.org/10.1134/S1995078015020081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015020081

Keywords

Navigation