Skip to main content
Log in

Magnetic and transport properties of magneto-anisotropic nanocomposites for controlled drug delivery

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Biodegradable polymeric film composites consisting of chitosan (Cht) and poly(3-hydroxybutyrate) (PHB) have been produced and used to encapsulate colloidal magnetite nanoparticles (MNPs) and a drug (dipyridamole). The magnetic organization of the MNPs induced by the exposure of the films to external magnetic fields was analyzed using ferromagnetic resonance and electron microscopy. A calculation of the relative abundance of aggregated nanoparticles showed that more than 14% of the particles were aggregated at total particle concentrations ranging from 3 to 8 mass %. Modification of the PHB-Cht composite matrix by nanoparticles has been proven to evoke changes in drug release kinetics, since the particles formed ordered magneto-anisotropic structures when exposed to external magnetic fields. The highest rate of transfer by diffusion was observed in the case of a nonisotropic matrix in which the orientation of particle aggregates coincided with the direction of the diffusion flux; the rate of drug release was the lowest in anisotropic matrices of biodegradable magneto-anisotropic nanocomposites with particle orientation perpendicular to the direction of diffusion. The physical reasons for the dependence of the release kinetics on the magnetic anisotropy of the samples are discussed. The results of the present study are indicative of the possibility of creating a new generation of therapeutic systems for the targeted delivery and sustained release of drugs controlled by a magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Gerasin, E. M. Antipov, V. V. Karbushev, V. G. Kulichikhin, G. P. Karpacheva, R. V. Talroze, and Y. V. Kudryavtsev, “New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications,” Russ. Chem. Rev. 82 (4), 303 (2013).

    Article  Google Scholar 

  2. T. Wang and J. L. Keddie, “Design and fabrication of colloidal polymer nanocomposites,” Adv. Colloid Interface Sci. 147 (148), 319 (2009).

    Article  Google Scholar 

  3. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, “Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review,” Progr. Polym. Sci. 38 (8), 1232 (2013).

    Article  Google Scholar 

  4. A. A. Sapalidis, F. K. Katsaros, Th. A. Steriotis, N. K. Kanellopoulos, S. Dante, and T. Hauss, “Neutron diffraction on polymer nanocomposites—A tool for structural and orientation studies,” J. Phys.: Conf. Ser. 340, 012090 (2012).

    Google Scholar 

  5. S. Kiran, N. R. James, A. Jayakrishnan, and R. J. Joseph, “Polyurethane thermoplastic elastomers with inherent radiopacity for biomedical applications,” Biomed. Mater. Res. A 100 (12), 3472 (2012).

    Article  Google Scholar 

  6. K. Schmidt-Rohr, A. Rawal, and X. W. Fang, “A new NMR method for determining the particle thickness in nanocomposites, using T2,H-selective X (1 H) recoupling,” J. Chem. Phys. 126 (5), 054701 (2007).

    Article  Google Scholar 

  7. D. Vollath, “Bifunctional nanocomposites with magnetic and luminescence properties,” Adv. Mater. 22 (39), 4410 (2010).

    Article  Google Scholar 

  8. Y. Chen, W. Xu, Y. Xiong, C. Peng, W. Liu, G. Zeng, and Y. Peng, “A novel fast responsive thermo-sensitive poly(N-isopropylacrylamide)-clay nanocomposites hydrogels modified by nanosized octavinyl polyhedral oligomeric silsesquioxane,” J. Nanosci. Nanotechnol. 13 (3), 2136 (2013).

    Article  Google Scholar 

  9. L. L. Li, C. J. Fang, H. Sun, and C. H. Yan, “Hierarchical self-assembly of pH-responsive nanocomposites with molecular-scale and mesoscale periodicities,” Chem. Mater. 20 (19), 5977 (2008).

    Article  Google Scholar 

  10. P. Tartaj, “Superparamagnetic composites: Magnetism with no memory,” Europ. J. Inorg. Chem., No. 3, 333 (2009).

    Article  Google Scholar 

  11. A. V. Bychkova, O. N. Sorokina, M. A. Rosenfeld, and A. L. Kovarskii, “Multifunctional biocompatible coatings on magnetic particles,” Russ. Chem. Rev. 81 (11), 1026 (2012).

    Article  Google Scholar 

  12. O. Philippova, A. Barabanova, V. Molchanov, and A. Khokhlov, “Magnetic polymer beads: Recent trends and developments in synthetic design and applications,” Europ. Polym. J. 47 (4), 542 (2011).

    Article  Google Scholar 

  13. M. An, J. Cui, Q. He, and L. Wang, “Down-/up-conversion luminescence nanocomposites for dual-modal cell imaging,” J. Mater. Chem. 1 (9), 1333 (2013).

    Article  Google Scholar 

  14. J. Gajendiran and V. Rajendran, “Preparation of Co3O4/carbon nanocomposite and their structural, optical and magnetic studies,” Mater. Sci. Semiconductor Processing 17, 59 (2014).

    Article  Google Scholar 

  15. Y. Xiao, H. Liang, and Z. Wang, “MnFe2O4/chitosan nanocomposites as a recyclable adsorbent for the removal of hexavalent chromium,” Mater. Res. Bull. 48 (10), 3910 (2013).

    Article  Google Scholar 

  16. A. Gong, W. Ping, J. Wang, and X. Zhu, “Cyclodextrin polymer/Fe3O4 nanocomposites as solid phase extraction material coupled with UV-vis spectrometry for the analysis of rutin,” Spectrochim. Acta Part A: Molec. Biomolec. Spectroscopy 122, 331 (2014).

    Article  Google Scholar 

  17. R. F. Neumann, M. Bahiana, L. G. Paterno, M. A. G. Soler, J. P. Sinnecker, J. G. Wen, and P. C. Morais, “Morphology and magnetism of multifunctional nanostructured γ-Fe2O3 films: Simulation and experiments,” J. Magn. Magn. Mater. 347, 26 (2013).

    Article  Google Scholar 

  18. S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, J. Portier, E. Duguet, et al., “Magnetic nanoparticle design for medical applications,” Progress Solid State Chem. 34 (2), 237 (2006).

    Article  Google Scholar 

  19. M. Giardiello, T. O. McDonald, P. Martin, A. Owen, and S. P. Rannard, “Facile synthesis of complex multicomponent organic and organic-magnetic inorganic nanocomposite particles,” J. Mater. Chem. 22 (47), 24744 (2012).

    Article  Google Scholar 

  20. S. Biswas, K. D. Belfield, R. K. Das, S. Ghosh, and A. F. Hebard, “Superparamagnetic nanocomposites templated with pyrazole-containing diblock copolymers,” Polymers 4 (2), 1211 (2012).

    Article  Google Scholar 

  21. S. Lu and J. Forcada, “Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization,” J. Polym. Sci. Part A: Polymer Chem. 44, 134187 (2006).

    Google Scholar 

  22. J. Zhang, J. Wang, T. Lin, C. H. Wang, K. Ghorbani, J. Fang, and X. Wang, “Magnetic and mechanical properties of polyvinyl alcohol (PVA) nanocomposites with hybrid nanofillers—graphene oxide tethered with magnetic Fe3O4 nanoparticles,” Chem. Eng. J. 237, 462 (2014).

    Article  Google Scholar 

  23. Y. Zhou, N. Sharma, P. Deshmukh, R. K. Lakhman, M. Jain, and R. M. Kasi, “Hierarchically structured free-standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical crosslinkers,” J. Am. Chem. Soc. 134 (3), 1630 (2012).

    Article  Google Scholar 

  24. Y. Samchenko, Z. Ulberg, and O. Korotych, “Multipurpose smart hydrogel systems,” Adv. Colloid Interface Sci. 168 (1), 247 (2011).

    Article  Google Scholar 

  25. A. Mohammadi, M. Barikani, and M. Barmar, “Effect of polyol structure on the properties of the resultant magnetic polyurethane elastomer nanocomposites,” Polym. Adv. Technol. 24 (11), 978 (2013).

    Article  Google Scholar 

  26. N. Hasanabadi, S. R. Ghaffarian, and M. M. Hasani-Sadrabadi, “Nafion-based magnetically aligned nanocomposite proton exchange membranes for direct methanol fuel cells,” Solid State Ionics 232, 58 (2013).

    Article  Google Scholar 

  27. H. Su, Y. Liu, D. Wang, C. Wu, C. Xia, Q. Gong, B. Song, and H. Ai, “Amphiphilic starlike dextran wrapped superparamagnetic iron oxide nanoparticle clsuters as effective magnetic resonance imaging probes,” Biomaterials 34 (4), 1193 (2013).

    Article  Google Scholar 

  28. W. Lu, Y. Shen, A. Xie, and W. Zhang, “Preparation and drug-loading properties of Fe3O4-poly(styrene-coacrylic acid) magnetic polymer nanocomposites,” J. Magn. Magn. Mater. 345, 142 (2013).

    Article  Google Scholar 

  29. C. Rümenapp, B. Gleich, and A. Haase, “Magnetic nanoparticles in magnetic resonance imaging and diagnostics,” Pharm. Res. 29 (5), 1165 (2012).

    Article  Google Scholar 

  30. M. Ventura, Y. Sun, V. Rusu, P. Laverman, P. Borm, A. Heerschap, E. Oosterwijk, X. F. Walboomers, et al., “Dual contrast agent for computed tomography and magnetic resonance hard tissue imaging,” Tissue Eng. Part C: Methods 19 (6), 405 (2013).

    Article  Google Scholar 

  31. A. K. Gupta, R. R. Naregalkar, V. D. Vaidya, and M. Gupta, “Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications,” Nanomedicine 2 (1), 23 (2007).

    Article  Google Scholar 

  32. M. Liong, J. Lu., M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, and J. I. Zink, “Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery,” ACS Nano 2 (5), 889 (2008).

    Article  Google Scholar 

  33. S. M. Janib, A. S. Moses, and J. A. MacKay, “Imaging and drug delivery using theranostic nanoparticles,” Adv. Drug Delivery Rev. 62 (11), 1052 (2010).

    Article  Google Scholar 

  34. M. A. Shah, M. S. Al-Shahry, and A. M. Asiri, “Biomedical applications of iron oxide nanostructures,” Int. J. Nano Biomater. 2 (1), 164 (2009).

    Article  Google Scholar 

  35. E. L. Ivantsova, A. L. Iordanskii, R. Yu. Kosenko, S. Z. Rogovina, and E. V. Prut, Chem.–Pharmaceut. J. 45 (1), 39 (2011).

    Google Scholar 

  36. A. L. Iordanskii, S. Z. Rogovina, R. Yu. Kosenko, E. L. Ivantsova, and E. V. Prut, “Development of a biodegradable polyhydroxybutyrate-chitosan-rifampicin composition for controlled transport of biologically active compounds,” Doklady Physical Chemistry 431 (2), 60 (2010).

    Article  Google Scholar 

  37. Magnetism, Ed. by S. V. Vonsovskii (Nauka, Moscow, 1971), p. 1032 [in Russian].

  38. A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of Radiowave Propagation in the Ionosphere (Nauka, Moscow, 1973), p. 591 [in Russian].

    Google Scholar 

  39. O. N. Sorokina, A. V. Bychkova, and A. L. Kovarskii, “Analysis of the ferromagnetic resonance spectra of aggregates of magnetite nanoparticles formed by a magnetic field,” Russian Journal of Physical Chemistry B 3 (2), 257 (2009).

    Article  Google Scholar 

  40. A. L. Kovarskii, A. V. Bychkova, O. N. Sorokina, and V. V. Kasparov, “Temperature Effects in the FMR Spectra of Magnetic Nanoparticles in Polymer Films and Viscous Fluid,” Magnetic resonance in solids 10, 25 (2008).

    Google Scholar 

  41. A. V. Bychkova, P. G. Pronkin, O. N. Sorokina, A. S. Tatikolov, and M. A. Rosenfeld, “Study of Protein Coatings Cross-Linked via the Free-Radical Mechanism on Magnetic Nanoparticles by the Method of Spectral and Fluorescent Probes,” Colloid Journal 76 (4), 387 (2014).

    Article  Google Scholar 

  42. V. I. Roldughin and S. V. Dolotov, “Electron Paramagnetic Resonance in Fractal Aggregates of Metal Nanoparticles,” Colloid Journal 66 (3), 381 (2004).

    Article  Google Scholar 

  43. S. V. Dolotov and V. I. Roldughin, “Simulation of ESR spectra of metal nanoparticle aggregates,” Colloid Journal 69 (1), 9 (2007).

    Article  Google Scholar 

  44. N. D. Cuong, T. T. Hoa, D. Q. Khieu, T. D. Lam, and N. D. Hoa, J. Compd. Alloys 523, 120 (2012).

    Article  Google Scholar 

  45. J. B. Marroquin, K. Y. Rhee, and S. J. Park, “Chitosan nanocomposite films: Enhanced electrical conductivity, thermal stability, and mechanical properties,” Carbohydr. Polym. 92, 1783 (2013).

    Article  Google Scholar 

  46. L. Qiang, A. Li, Zhao Z. Tianqi, S. Zhong, H. Wang, and X. Cui, “Atomic-scale interactions of the interface between chitosan and Fe3O4,” Colloids Surf. A: Physicochem. Eng. Aspects 419, 125 (2013).

    Article  Google Scholar 

  47. J. S. Mackie and P. Meares, Proc. R. Soc. London A 232, 498 (1955).

    Article  Google Scholar 

  48. B. Amsden, “Solute diffusion in hydrogels. An examination of the retardation effect,” Polymer Gels Networks 6, 13 (1998).

    Article  Google Scholar 

  49. H. Fujita, in Diffusion in Polymers, Ed. by J. Crank and G. S. Park (Acad. Press, London, 1968).

  50. H. Yasuda, A. Peterlin, C. K. Colton, K. A. Smith, and E. W. Merrill, Makromol. Chem. 126, 177 (1996).

    Article  Google Scholar 

  51. E. S. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge Univ. Press, Cambridge, 1984).

    Google Scholar 

  52. B. B. Pajarito, M. Kuboushi, T. Sakai, and S. Aoki, “Effective diffusion in flake-polymer composites with accelerate interphase transport,” J. Soc Mater. Sci. Jpn. 61 (10), 860 (2012).

    Article  Google Scholar 

  53. B. J. Sung and A. Yethiraj, “Lateral diffusion and percolation in membranes,” Phys. Rev. Lett. 96, 228103 (2006).

    Article  Google Scholar 

  54. V. T. Lebedev, G. Torok, L. Cser, A. L. Buyanov, et al., “Magnetic phase ordering in ferrogels under applied field,” J. Magn. Magn. Mater. 201 (1), 136 (1999).

    Article  Google Scholar 

  55. M. Farshad and M. Le Roux, “Compression properties of magnetostrictive polymer composite gels,” Polymer Testing 24 (2), 163 (2005).

    Article  Google Scholar 

  56. T. Yu. Liu, S. H. Hu, K. H. Liu, D. M. Liu, and S. Y. Chen, “Study on controlled drug permeation of magnetic-sensitive ferrogels: Effect of Fe3O4 and PVA,” J. Control. Release 126 (3), 228 (2008).

    Article  Google Scholar 

  57. T. Y. Liu, S. H. Hu, T. Y. Liu, D. M. Liu, and S. Y. Chen, “Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug,” Langmuir 22 (14), 5974 (2006).

    Article  Google Scholar 

  58. N. S. Satarkar and J. Z. Hilt, “Magnetic hydrogel nanocomposites for remote controlled pulsative drug release,” J. Controlled Release 130 (3), 246 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Bychkova or A. L. Iordanskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkova, A.V., Iordanskii, A.L., Kovarski, A.L. et al. Magnetic and transport properties of magneto-anisotropic nanocomposites for controlled drug delivery. Nanotechnol Russia 10, 325–335 (2015). https://doi.org/10.1134/S199507801502007X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507801502007X

Keywords

Navigation