Skip to main content
Log in

Study of the influence of multiwalled carbon nanotubes (12–14 nm) on the main target tissues of the bivalve Modiolus modiolus

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The reaction of bivalves Modiolus modiolus to pulse (for 24 and 48 h) exposure with multiwalled carbon nanotubes (MWCNTs) (12–14 nm, MWNT concentration in sea water of 100 mg/L) is manifested in the ingestion of MWCNT aggregates formed in seawater despite their rapid sedimentation from the water column to the bottom of the aquariums. After 24 h, the MWCNT aggregates are observed in the intestinal lumen (size of 10 to 150 μm) and in the tubules of the digestive gland (10 to 50 μm). After 48 h, only large aggregates in contact with mucus and desquamated epithelium fragments are detected in the lumen of the intestine. The smallest aggregates seem to be inside epithelial cells. In the intestine, digestive gland, and gills, MWCNT aggregates induce histopathological changes in the epithelium (erosion, necrosis, trend towards increased vacuolization of the cells) and swelling of the connective tissue. In the gill epithelium after 48 h, patterns morphologically corresponding to apoptosis are observed. Despite significant organ damage, no change in the cellular composition of the hemolymph in mussels exposed to the MWCNTs is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vianello, A. Boldrin, P. Guerriero, et al., “Microplastic particles in sediments of Lagoon of Venice, Italy: first observations on occurrence, spatial patterns and identification,” Estuarine, Coastal Shelf Sci. 130, 54–61 (2013).

    Article  Google Scholar 

  2. J. A. Ivar Do Sul and M. F. Costa, “The present and future of microplastic pollution in the marine environment (review),” Environ. Pollut. 185, 352–364 (2014).

    Article  Google Scholar 

  3. M. N. Moore, “Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?,” Environ. Int. 32, 967–976 (2006).

    Article  Google Scholar 

  4. A. Baun, N. B. Hartmann, K. Grieger, and K. O. Kusk, “Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing,” Ecotoxicology 17 (5), 387–395 (2008).

    Article  Google Scholar 

  5. K. Tiede, M. Hassellov, E. Breitbarth, et al., “Considerations for environmental fate and ecotoxicity testing to support environmental risk assessment for engineered nanoparticles,” J. Chromatogr. 1216 (3), 503–509 (2009).

    Article  Google Scholar 

  6. L. Canesi, C. Ciacci, R. Fabbri, et al., “Bivalve mollusks as a unique target group for nanoparticle toxicity,” Marine Environ. Res. 76, 16–21 (2012).

    Article  Google Scholar 

  7. J. E. Ward and D. J. Kach, “Marine aggregates facilitate ingestion of nanoparticles by suspension feeding bivalves,” Marine Environ. Res. 68, 137–142 (2009).

    Article  Google Scholar 

  8. E. Oberdörster, “Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass,” Environ. Health Perspect. 112, 1058–1062 (2004).

    Article  Google Scholar 

  9. F. Gagnè, J. Auclair, P. Turcotte, et al., “Ecotoxicity of Cd-Te quantum dots to freshwater mussel: impacts on immune system, oxidative stress and genotoxicity,” Aquatic Toxicol. 86, 333–340 (2008).

    Article  Google Scholar 

  10. A. Koehler, U. Marx, K. Broeg, et al., “Effects of nanoparticles in Mytilus edulis gills and hepatopancreas–a new threat to marine life?,” Marine Environ. Res. 66, 12–14 (2008).

    Article  Google Scholar 

  11. S. Tedesco, H. Doyle, G. Redmond, and D. Sheehan, “Gold nanoparticles and oxidative stress in Mytilus Edulis,” Marine Environ. Res. 66, 131–133 (2008).

    Article  Google Scholar 

  12. A. H. Ringwood, N. Levi Polyachenko, and D. L. Carroll, “Fullerene exposures with oysters: embryonic, adult, and cellular responses,” Environ. Sci. Technol. 43, 7136–7141 (2009).

    Article  Google Scholar 

  13. T. Galloway, C. Lewis, I. Dolciotti, et al., “Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete,” Environ. Pollut. 158, 1748–1755 (2010).

    Article  Google Scholar 

  14. E. J. Petersen, R. A. Pinto, D. J. Mai, et al., “Influence of polyethyleneimine graftings of multi-walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna,” Environ. Sci. Technol. 45, 1133–1138 (2011).

    Article  Google Scholar 

  15. C. Falugi, M. G. Aluigi, M. C. Chiantore, et al., “Toxicity of metal oxide nanoparticles in immune cells of the Sea Urchin,” Marine Environ. Res. 76, 114–121 (2012).

    Article  Google Scholar 

  16. P.-E. Buffet, M. Richard, F. Caupos, et al., “A mesocosm study of fate and effects of CuO nanoparticles on endobenthic species (Scrobicularia Plana, Hediste Diversicolor),” Environ. Sci. Technol. 47 (3), 1620–1628 (2013).

    Google Scholar 

  17. P.-E. Buffet, A. Zalouk-Vergnoux, A. Châtel, et al., “A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species: the ragworm Hediste diversicolor and the bivalve mollusc Scrobicularia plana,” Sci. Total Environ. 470–471, 1151–1159 (2014).

    Article  Google Scholar 

  18. C. Jacobasch, C. Völker, S. Giebner, et al., “Long-term effects of nanoscaled titanium dioxide on the cladoceran Daphnia magna over six generations,” Environ. Pollut. 186, 180–186 (2014).

    Article  Google Scholar 

  19. V. Moschino, N. Nesto, S. Barison, et al., “A preliminary investigation on nanohorn toxicity in marine mussels and polychaetes,” Sci. Total Environ. 468–469, 111–119 (2014).

    Article  Google Scholar 

  20. R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, et al., “Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique,” Toxicol. Sci. 101 (2), 239–253 (2008).

    Article  Google Scholar 

  21. D. B. Warheit, “How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization?,” Toxicol. Sci. 101 (2), 183–185 (2008).

    Article  Google Scholar 

  22. V. Matranga and I. Corsi, “Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches,” Marine Environ. Res. 76, 32–40 (2012).

    Article  Google Scholar 

  23. L. M. Oliver and W. S. Fisher, “Appraisal of prospective bivalve immunomarkers,” Biomarkers 4 (6), 510–530 (1999).

    Article  Google Scholar 

  24. M. Auffret, “Bivalves as models for marine immunotoxicology,” in Investigative Immunotoxicology, Ed. by H. Tryphonas, M. Fournier, B. R. Blakley, J. E. G. Smits, and P. Brousseau (Taylor & Francis, Boca Raton, 2005), pp. 29–48.

    Chapter  Google Scholar 

  25. A. Dagnino, J. I. Allen, M. N. Moore, et al., “Development of an expert system for the integration of biomarker responses in mussels into an animal health index,” Biomarkers 12, 155–172 (2007).

    Article  Google Scholar 

  26. A. A. Anisimova, “Morphofunctional parameters of hemocytes in assessment of the physiological status of bivalves,” Russ. J. Marine Biol. 39 (6), 381–391 (2013).

    Article  Google Scholar 

  27. C. Barmo, C. Ciacci, B. Canonico, et al., “In vivo effects of N-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis,” Aquatic Toxicol. 132–133, 9–18 (2013).

    Article  Google Scholar 

  28. A. D’Agata, S. Fasulo, L. J. Dallas, et al., “Enhanced toxicity of ‘bulk’ titanium dioxide compared to ‘fresh’ and ‘aged’ nano-TiO2 in marine mussels (Mytilus galloprovincialis),” Nanotoxicology 8 (5), 549–558 (2014).

    Article  Google Scholar 

  29. M. A. Browne, A. Dissanayake, T. S. Galloway, et al., “Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L),” Environ. Sci. Technol. 42, 5026–5031 (2008).

    Article  Google Scholar 

  30. L. Canesi, G. Gallo, M. Gavioli, and C. Pruzzo, “Bacteria-hemocyte interactions and phagocytosis in marine bivalves,” Microscopy Res. Techn. 57, 469–476 (2002).

    Article  Google Scholar 

  31. P. G. Tiscar and F. Mosca, “Defense mechanisms in farmed marine mollusks,” Vet. Res. Commun. 28, 57–62 (2004).

    Article  Google Scholar 

  32. L. Donaghy, C. Lambert, K.-S. Choi, and P. Soudant, “Hemocytes of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum): current knowledge and future prospects,” Aquaculture 297, 10–24 (2009).

    Article  Google Scholar 

  33. V. L. Kuznetsov, K. V. Elumeeva, A. V. Ishchenko, et al., “Multi-walled carbon nanotubes with PPM level of impurities,” Phys. Status Solidi B 247 (11–12), 2695–2699 (2010).

    Article  Google Scholar 

  34. V. L. Kuznetsov, D. V. Krasnikov, A. N. Schmakov, and K. V. Elumeeva, “In situ and ex situ time resolved study of multi-component Fe-Co oxide catalyst activation during MWNT synthesis,” Phys. Status Solidi B 249, 2390–2394 (2012).

    Article  Google Scholar 

  35. L. Canesi, C. Ciacci, D. Vallotto, et al., “In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes,” Aquat. Toxicol. 96, 151–158 (2010).

    Article  Google Scholar 

  36. L. Canesi, R. Fabbri, G. Gallo, et al., “Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (nano carbon black, C60 fullerene, nano-TiO2, nano-SiO2),” Aquat. Toxicol. 100, 168–177 (2010).

    Article  Google Scholar 

  37. A. P. Roberts, A. S. Mount, B. Seda, et al., “In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna,” Environ. Sci. Technol. 41, 3025–3029 (2007).

    Article  Google Scholar 

  38. M. C. Mix, “A general model for leukocytes cell renewal in bivalve mollusks,” Marine Fish. Rev. 38 (10), 37–41 (1976).

    Google Scholar 

  39. E. Ottaviani, A. Franchini, D. Barbieri, and D. Kletsas, “Comparative and morphofunctional studies on Mytilus galloprovincialis hemocytes: presence of two agingrelated hemocyte stages,” Italian J. Zool. 65 (4), 340–354 (1998).

    Article  Google Scholar 

  40. E. Garcia-Garcia, M. Prado-Alvarez, B. Novoa, et al., “Immune responses of mussel hemocyte subpopulations are differentially regulated by enzymes of the PI 3-K, PKC, and ERK kinase families,” Develop. Comparative Immunol. 32, 637–653 (2008).

    Article  Google Scholar 

  41. A. A. Anisimova, “Flow cytometric and light microscopic identification of hemocyte subpopulations in Modiolus kurilensis (Bernard, 1983) (Bivalvia: Mytilidae),” Russ. J. Marine Biol. 38 (5), 406–415 (2012).

    Article  Google Scholar 

  42. H. Hégaret, P. M. da Silva, G. H. Wikfors, et al., “Hemocyte responses of manila clams, Ruditapes philippinarum, with varying parasite, Perkinsus olseni, severity to toxic-algal exposures,” Aquat. Toxicol. 84, 469–479 (2007).

    Article  Google Scholar 

  43. P. M. Da Silva, H. Hégaret, C. Lambert, et al., “Immunological responses of the manila clam (Ruditapes philippinarum) with varying parasite (Perkinsus olseni) burden, during a long-term exposure to the harmful alga, Karenia selliformis, and possible interactions,” Toxicon 51, 563–573 (2008).

    Article  Google Scholar 

  44. E. Galimany, A. R. Place, M. Ramón, et al., “The effects of feeding Karlodinium veneficum (PLY # 103; Gymnodinium veneficum Ballantine) to the blue mussel Mytilus edulis,” Harmful Algae 7 (1), 91–98 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Anisimova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimova, A.A., Chaika, V.V., Kuznetsov, V.L. et al. Study of the influence of multiwalled carbon nanotubes (12–14 nm) on the main target tissues of the bivalve Modiolus modiolus . Nanotechnol Russia 10, 278–287 (2015). https://doi.org/10.1134/S1995078015020020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015020020

Keywords

Navigation