Skip to main content
Log in

Self-propagating high-temperature synthesis in the Ti-Si-C system: Features of product patterning

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Nanolaminate Ti3SiC2-based material is prepared by self-propagating high-temperature synthesis (SHS) from elements, and the processes of its phase and structure formation is investigated. The Ti3SiC2 content in combustion products grows with an increase in the lifetime of the melt. The stratification observed at the level of the crystal structure results in the pronounced nanolaminate structure of Ti3SiC2 grains. The formation of the Ti3SiC2 phase occurs behind the combustion front with the interaction of stoichiometric TiC with the melt based on Ti-Si. Quantum-chemical calculations show that the formation of Ti-Si bonds is energetically preferable to Ti-C bond formation. A comparison of TiC and Ti3SiC2 crystal structures allow the assumption to be made that the laminate shape of Ti3SiC2 crystals is caused by the accumulation of structure discrepancies and hence by a lack of conjugation between the crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Barsoum, The MAX Phases and Their Properties in Ceramics Science and Technology, Ed. by R. R. Riedel and I.-W. Chen (Wiley-VCH, New York, 2010), Vol. 2, pp. 299–345.

  2. M. W. Barsoum and T. El-Raghy, “Synthesis and characterization of a remarkable ceramic. Ti3SiC2,” J. Am. Ceram. Soc. 79(7), 1953–1956 (1996).

    Article  Google Scholar 

  3. T. El-Raghy and M. W. Barsoum, “Processing and mechanical properties of Ti3SiC2: I. Reaction path and microstructure evolution,” J. Am. Ceram. Soc. 82(10), 2849–2854 (1999).

    Article  Google Scholar 

  4. Z. M. Sun, S. Yang, and H. Hashimoto, “Ti3SiC2 powder synthesis,” Ceram. Int. 30(7), 1873–1877 (2004).

    Article  Google Scholar 

  5. N. F. Gao, Y. Miyamoto, and D. Zhang, “On physical and thermochemical properties of high-purity Ti3SiC2,” Mater. Lett. 55(1), 61–66 (2002).

    Article  Google Scholar 

  6. Z. F. Zhang, Z. M. Sun, H. Hashimoto, and T. Abe, “Effects of sintering temperature and Si content on the purity of Ti3SiC2 synthesized from Ti/Si/TiC powders,” J. Alloys Comp. 352(1–2), 283–289 (2003).

    Article  Google Scholar 

  7. Y. Zhou and Z. Sun, “Temperature fluctuation/hot pressing synthesis of Ti3SiC2,” J. Mater. Sci. 35(17), 4343–4346 (2000).

    Article  Google Scholar 

  8. R. Pampuch, J. Lis, L. Stobierski, and M. Tymkiewicz, “Solid combustion synthesis of Ti3SiC2”, J. Eur. Ceram. Soc. 5(5), 283–287 (1989).

    Article  Google Scholar 

  9. S. G. Vadchenko, O. D. Boyarchenko, A. E. Sytschev, and N. V. Sachkova, “SHS joining in the Ti-Si-C system: structure of transition layer,” Int. J. Self-Propagating High-Temp. Synthesis 22(1), 46–51 (2013).

    Article  Google Scholar 

  10. S. B. Li and H. X. Zhai, “Synthesis and reaction mechanism of Ti3SiC2 by mechanical alloying of elemental Ti, Si and C powders,” J. Amer. Ceram. Soc. 88(8), 2092–2098 (2005).

    Article  Google Scholar 

  11. J. F. Li, T. Matsuki, and R. Watanabe, “Combustion reaction during mechanical alloying synthesis of Ti3SiC2 ceramics from 3Ti/Si/2C powder mixture,” J. Amer. Ceram. Soc. 88(5), 1318–1320 (2005).

    Article  Google Scholar 

  12. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Twodimensional transition metal carbides,” ACS Nano 6(2), 1322–1331 (2012).

    Article  Google Scholar 

  13. Yu. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J. E. Fischer, B. Yi, H. C. Foley, and M. W. Barsoum, Nature Mater. 2(9), 591–594 (2003).

    Article  Google Scholar 

  14. M. A. El Saeed, F. A. Deorsola, and R. M. Tshad, “Optimizartion of Ti3SiC2 MAX phase synthesis,” Int. J. Refractory Met. Hard Mater. 35, 127–131 (2012).

    Article  Google Scholar 

  15. D. Yu. Kovalev, N. A. Kochetov, and V. I. Ponomarev, “Critical state criteria for Ni-Al system under mechanical activation,” Fiz. Goren. Vzryva 46(4), 1–8 (2010).

    Google Scholar 

  16. D. Bandyopadhyay, “The Ti-Si-C system (titanium-silicon-carbon),” J. Phase Equilibria Diffusion 25(5), 416–420 (2004).

    Article  Google Scholar 

  17. F. Meng, B. Liang, and M. Wang, “Investigation of formation mechanism of Ti3SiC2 by self-propagatinghigh-temperature synthesis,” Int. J. Refractory Met. Hard Mater. 41, 152–161 (2013).

    Article  Google Scholar 

  18. V. I. Ponomarev, I. O. Khomenko, and A. G. Merzhanov, “Laboratory method for X-ray radiography,” Kristallografiya 40(1), 14–17 (1995).

    Google Scholar 

  19. A. A. Granovsky, Firefly Ver. 8.0. http://classic.chem.msu.su/gran/firefly/index.html

  20. K. Momma and F. J. Izumi, Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  Google Scholar 

  21. E. K. Storms, The Refractory Carbides (Acad. Press, New York-London, 1967).

    Google Scholar 

  22. S. V. Akhonin, M. P. Kruglenko, and V. I. Kostenko, “The way to remove TiC titanium carbide additions under titanium electron-beam melting,” Sovr. Elektrometallurg., No. 2, 21–24 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Sytschev.

Additional information

Original Russian Text © S.G. Vadchenko, A.E. Sytschev, D.Yu. Kovalev, A.S. Shchukin, S.V. Konovalikhin, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadchenko, S.G., Sytschev, A.E., Kovalev, D.Y. et al. Self-propagating high-temperature synthesis in the Ti-Si-C system: Features of product patterning. Nanotechnol Russia 10, 67–74 (2015). https://doi.org/10.1134/S1995078015010206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015010206

Keywords

Navigation