Skip to main content
Log in

Nanocomposites on the basis of layered silicates as the catalysts for the dehydrogenation of methanol

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The methanol dehydrogenation reaction has been studied over impregnated copper-containing catalysts. A silica-montmorillonite nanocomposite has been used as the support for these systems. The catalyst’s features were found to depend strongly on the distance of the interlayer spacing within the structure of montmorillonite. The textural changes taking place in the support affect the accessibility of the active sites of the catalyst for methanol. The optimal temperature of the reductive pretreatment in hydrogen atmosphere required for the preparation of an active and durable enough nanocomposite-based catalyst was found to be 300°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Vicente, M. A. Bañares-Muñoz, L. M. Gandia, and A. Gil, “On the structural changes of a saponite intercalated with various polycations upon thermal treatments,” Appl. Catal. A: General 217, 191–204 (2001).

    Article  Google Scholar 

  2. S. Mnasri and N. Frini-Srasra, “Synthesis, characterization and catalytic evaluation of zirconia-pillared bentonite for 1,3-dioxalane synthesis,” Surf. Eng. Appl. Electrochem. 49(4), 336–347 (2013).

    Article  Google Scholar 

  3. H. J. Chae, I.-S. Nam, S. W. Ham, and S. B. Hong, “Physicochemical characteristics of pillared interlayered clays,” Catal. Today 68, 31–40 (2001).

    Article  Google Scholar 

  4. H. Mao, X. Liu, J. Yang, B. Li, Q. Chen, and J. Zhong, “Fabrication of magnetic silica-pillared clay (SPC) nanocomposites with ordered interlayer mesoporous structure for controlled drug release,” Microporous Mesoporous Mater. 184, 169–176 (2014).

    Article  Google Scholar 

  5. H. Mao, K. Zhu, B. Li, C. Yao, and Y. Kong, “Synthesis of titania modified silica-pillared clay (SPC) with highly ordered interlayered mesoporous structure for removing toxic metal ion Cr(VI) from aqueous state,” Appl. Surf. Sci. 292, 1009–1019 (2014).

    Article  Google Scholar 

  6. N. Wu, B. Li, Z. Liu, and C. Han, “Synthesis of Keggin-type lacunary 11-tungstophosphates encapsulated into mesoporous silica pillared in clay interlayer galleries and their catalytic performance in oxidative desulfurization,” Catal. Commun. 46, 156–160 (2014).

    Article  Google Scholar 

  7. S. Mnasri-Ghnimi and N. Frini-Srasra, “Promoting effect of cerium on the characteristic and catalytic activity of Al, Zr, and Al-Zr pillared clay,” Appl. Clay Sci. 88–89, 214–220 (2014).

    Article  Google Scholar 

  8. O. Yu. Golubeva, E. N. Korytkova, and V. V. Gusarov, “Hydrothermal synthesis of magnesium-silicate montmorillonite for polymeric-innorganic nanocomposites,” Zh. Prikl. Khim. 78(1), 26–33 (2005).

    Google Scholar 

  9. R. Jiang, W. Guo, M. Li, H. Zhu, L. Zhao, X. Lu, and H. Shan, “Methanol dehydrogenation on Rh(1 1 1): a density functional and microkinetic modeling study,” J. Molecu. Catal. A: Chem. 344, 99–110 (2011).

    Article  Google Scholar 

  10. W. Guo, W. Q. Tian, X. Lian, F. Liu, M. Zhou, P. Xiao, and Y. Zhang, “A comparison of the dominant pathways for the methanol dehydrogenation to CO on Pt7 and Pt7 xNix (x = 1, 2, 3) bimetallic clusters: a DFT study,” Comput. Theor. Chem. 1032, 73–83 (2014).

    Article  Google Scholar 

  11. S. Su, P. Zaza, and A. Renken, “Catalytic dehydrogenation of methanol to water-free formaldehyde,” Chem. Eng. Technol. 17(1), 34–40 (1994).

    Article  Google Scholar 

  12. J. S. Lee, J. C. Kim, and Y. G. Kim, “Methyl formate as a new building block in C1 chemistry,” Appl. Catal. 57(1), 1–30 (1990).

    Article  Google Scholar 

  13. E. V. Egorova, S. N. Antonyuk, A. I. Trusov, E. R. Nugmanov, and A. Yu. Gureeva, “Historical aspects of synthesis methods development for methylformate,” in Proc. Reaktiv-2002 (Reaktiv, Ufa, 2002), pp. 196–198.

    Google Scholar 

  14. I. Rodriguez-Ramos, A. Guerrero-Ruiz, M. L. Rojas, and J. L. G. Fierro, “Dehydrogenation of methanol to methyl formate over copper-containing perovskitetype oxides,” Appl. Catal. 68(1), 217–228 (1991).

    Article  Google Scholar 

  15. A. Guerrero-Ruiz, I. Rodriguez-Ramos, and J. L. G. Fierro, “Dehydrogenation of methanol to methyl formate over supported copper catalysts,” Appl. Catal. 72(1), 119–137 (1991).

    Article  Google Scholar 

  16. A. C. Lausche, F. Abild-Pedersen, R. J. Madix, J. K. Nørskov, and F. Studt, “Analysis of sulfur-induced selectivity changes for anhydrous methanol dehydrogenation on Ni(100) surfaces,” Surf. Sci. 613, 58–62 (2013).

    Article  Google Scholar 

  17. T. Matsuda, K. Yogo, C. Pantawong, and E. Kikuchi, “Catalytic properties of copper-exchanged clays for the dehydrogenation of methanol to methyl formate,” Appl. Catal. A 126(1), 177–186 (1995).

    Article  Google Scholar 

  18. Y. Morikawa, K. Takagi, Y. Moro-Oka, and T. Ikawa, “Cu-fluortetrasilica mica. A novel effective catalyst for the dehydrogenation of methanol to from methyl formate,” Chem. Lett., No. 11, 1805–1808 (1982).

    Google Scholar 

  19. Y. Morikawa, T. Goto, Y. Moro-Oka, and T. Ikawa, “Conversion of methanol over metal ion exchanged forms of fluorotetrasilica mica,” Chem. Lett., No. 10, 1667–1670 (1982).

    Google Scholar 

  20. Y. Morikawa, K. Takagi, Y. Moro-Oka, and T. Ikawa, “Dehydrogenation of methanol to form methyl formate over cupric ion exchanged form of fluorotetrasilica mica,” in Proc. 8th Int. Congr. on Catalysis (Berlin, 1984), Vol. 5, pp. V679–V690.

    Google Scholar 

  21. M. Frenkel, “Surface acidity of montmorillonites,” Clays Clay Miner. 22, 435–441 (1974).

    Article  Google Scholar 

  22. E. D. Guerreiro, O. F. Gorriz, G. Larsen, and L. A. Arrúa, “Cu/SiO2 catalysts for methanol to methyl formate dehydrogenation: a comparative study using different preparation techniques,” Appl. Catal. A: General 204(1), 33–48 (2000).

    Article  Google Scholar 

  23. D. I. Kochubei, EXAFS Spectroscopy for Catalysts (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vedyagin.

Additional information

Original Russian Text © A.A. Vedyagin, A.I. Nizovskii, K.S. Golohvast, P.G. Tsyrulnikov, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedyagin, A.A., Nizovskii, A.I., Golohvast, K.S. et al. Nanocomposites on the basis of layered silicates as the catalysts for the dehydrogenation of methanol. Nanotechnol Russia 9, 693–699 (2014). https://doi.org/10.1134/S1995078014060172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078014060172

Keywords

Navigation