Skip to main content
Log in

Fullerenes: In vivo studies of biodistribution, toxicity, and biological action

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The analysis of toxic effects of fullerenes and their derivatives towards mammals is presented in this review. The relationship between the biological activity of fullerenes and their physicochemical properties is characterized, as is the relationship between the outcomes of biosafety assessment of fullerenes and the exposure routes. To better enable evaluation of the toxic effect of nanomaterials in vivo standardized procedures both for experiments and for evaluation are recommended. Data on adsorption, distribution, metabolism, and excretion (ADME) of fullerenes for different routes of exposure is summarized. It is shown that fullerene absorption and translocation to tissues and organs distant from the deposition site depend on the exposure route and the dose administered. A detailed analysis is carried out of fullerene in vivo toxic effects following exposure via the respiratory system (inhalation and intratracheal administration), gastrointestinal tract (peroral and intraperitoneal administration), after dermal and parenteral (intraperitoneal, intravenous) administration. Fullerene inhalation causes local minor and short-term effects, and lung inflammation and pathological lesions are induced by high doses of nanoparticles. The literature data indicate also absence of skin and eye irritation, penetration into the derma and negligible sensitization for fullerene. No significant toxicity effects following the peroral exposure are observed and this is due to the low absorption of fullerene from the gastrointestinal tract and its effective excretion. The necessity to continue studying fullerene’s metabolic pathways and toxicity in acute and chronic experiments is reasoned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Demming, “The state of research after 25 years of Nanotechnology,” Nanotechnology 25(1), 010201 (2013).

    Google Scholar 

  2. H. L. I. Bouwmeester, H. J. P. Marvin, K. A. Dawson, M. Berges, D. Braguer, H. J. Byrne, A. Casey, G. Chambers, M. J. Clift, G. Elia, T. F. Fernandes, L. B. Fjellsbo, P. Hatto, L. Juillerat, C. Klein, W. G. Kreyling, C. Nickel, M. Riediker, and V. Stone, “Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices,” Nanotoxicology 5(1), 1–11 (2011).

    Google Scholar 

  3. J. R. Z. Peralta-Videa, M. L. Lopez-Moreno, G. de la Rosa, J. Hong, and J. L. Gardea-Torresdey, “Nanomaterials and the environment: a review for the biennium 2008–2010,” J. Hazard Mater. 186(1), 1–15 (2011).

    Google Scholar 

  4. H. Bouwmeester, S. Dekkers, M. Y. Noordam, W. I. Hagens, A. S. Bulder, C. de Heer, S. E. C. G. ten Voorde, S. W. P. Wijnhoven, H. J. P. Marvin, and A. J. A. M. Sips, “Review of health safety aspects of nanotechnologies in food production,” Regul. Toxicol. Pharmacol. 53(1), 52–62 (2009).

    Google Scholar 

  5. N. Feliu and B. Fadeel, “Nanotoxicology: no small matter,” Nanoscale 2(12), 2514–2520 (2010).

    Google Scholar 

  6. H. Alenius, J. Catalán, H. Lindberg, H. Norppa, J. Palomäki, and K. Savolainen, “Chapter 3-nanomaterials and human health, in Handbook of Nanosafety, Eds. by U. Vogel, et al. (Academic Press, San Diego, 2014), pp. 59–133.

    Google Scholar 

  7. H. Johnston, G. Pojana, S. Zuin, N. R. Jacobsen, P. Moller, S. Loft, M. Semmler-Behnke, C. McGuiness, D. Balharry, A. Marcomini, H. Wallin, W. Kreyling, K. Donaldson, L. Tran, and V. Stone, “Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges,” Crit. Rev. Toxicol. 43(1), 1–20 (2013).

    Google Scholar 

  8. A. Seaton, L. Tran, R. Aitken, and K. Donaldson, “Nanoparticles, human health hazard and regulation,” J. Royal Soc. Interface 7(1), 119–129 (2010).

    Google Scholar 

  9. J. M. Davis, “A comprehensive environmental assessment approach to engineered nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5(2), 139–149 (2013).

    Google Scholar 

  10. A. Trpkovic, B. Todorovic-Markovic, and V. Trajkovic, “Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress,” Arch. Toxicol. 86(12), 1809–1827 (2012).

    Google Scholar 

  11. K. Aschberger, H. J. Johnson, V. Stone, R. J. Aitken, C. L. Tran, S. M. Hankin, S. A. Peters, and F. M. Christensen, “Review of fullerene toxicity and exposure-appraisal of a human health risk assessment, based on open literature,” Regul. Toxicol. Pharmacol. 58(3), 455–473 (2010).

    Google Scholar 

  12. “List of representative manufactured nanomaterials for testing-OECD,” http://www.oecd.org/env/ehs/nanosafety/List-of-representative-MN-for-testing-Nov-2012.pdf.

  13. H. W. Kroto, J. R. Heath, and S. C. O’Brien, “C60: Buckminsterfullerene,” Nature 318(6042), 162–163 (1985).

    Google Scholar 

  14. V. I. Sokolov and I. V. Stankevich, “Fullerenes-new allotropic form of carbon: structure, electronic structure and chemical properties,” Usp. Khim. 62(5), 455–473 (1993).

    Google Scholar 

  15. E. N. Karaulova and E. I. Bagrii, “Fullerenes: methods of functionalization and perspectives of derivatives’ application,” Usp. Khim. 68(11), 979–998 (1999).

    Google Scholar 

  16. M. Prato, A. Bianco, M. Maggini, G. Scorrano, C. Toniolo, and F. Wudl, “Synthesis and characterization of the first fullerene-peptide,” J. Org. Chem. 58(21), 5578–5580 (1993).

    Google Scholar 

  17. S. Yamago, H. Tokuyama, E. Nakamura, M. Prato, and F. Wudl, “Chemical derivatization of organofullerenes through oxidation, reduction, and carbonoxygen and carbon-carbon bond-forming reactions,” J. Org. Chem. 58(18), 4796–4798 (1993).

    Google Scholar 

  18. J. W. Arbogast, A. P. Darmanyan, C. S. Foote, F. N. Diederich, R. L. Whetten, Y. Rubin, M.M. Alvarez, and S. J. Anz, “Photophysical properties of sixty atom carbon molecule (C60),” J. Phys. Chem. 95(1), 11–12 (1991).

    Google Scholar 

  19. C. S. Foote, “Photophysical and photochemical properties of fullerenes,” in Electron Transfer, Ed. by I. J. Mattay (Springer Berlin Heidelberg, 1994), pp. 347–363.

    Google Scholar 

  20. P. J. Krusic, E. Wasserman, P. N. Keizer, J. R. Morton, and K. F. Preston, “Radical reactions of C60,” Science 254(5035), 1183–1185 (1991).

    Google Scholar 

  21. H. Barry and M. C. John, Free Radical in Biology and Medicine, 4th ed. (Oxford University Press, 2006).

    Google Scholar 

  22. V. N. Bezmelnitsin, A. V. Eletskii, and M. V. Okun’, “Fullerenes in Solutions,” Usp. Fiz. Nauk 168(11), 1195–1220 (1998).

    Google Scholar 

  23. R. S. Ruoff, D. S. Tse, L. Malhotra Ripudaman, and C. Donald, “Solubility of fullerene (C60) in a variety of solvents,” J. Phys. Chem. 97(13), 3379–3383 (1993).

    Google Scholar 

  24. N. O. Mchedlov-Petrossyan, “Fullene solutions: colloidal aspect,” Khimiya, fizika ta tekhnologiya poverkhni 1(1), 19–37 (2010).

    Google Scholar 

  25. N. O. Mchedlov-Petrossyan, “Fullerenes in molecular liquids. Solutions in “good” solvents: another view,” J. Mol. Liquids 161(1), 1–12 (2011).

    Google Scholar 

  26. N. O. Mchedlov-Petrossyan, “Fullerenes in liquid media: an unsettling intrusion into the solution chemistry,” Chem. Rev. 113(7), 5149–5193 (2013).

    Google Scholar 

  27. S. Nath, H. Pal, and A. V. Sapre, “Effect of solvent polarity on the aggregation of fullerenes: a comparison between C60 and C70,” Chem. Phys. Lett. 360(5–6), 422–428 (2002).

    Google Scholar 

  28. S. Nath, H. Pal, and A. V. Sapre, “Effect of solvent polarity on the aggregation of C60,” Chem. Phys. Lett. 327(3–4), 143–148 (2000).

    Google Scholar 

  29. V. N. Bezmelnitsin, A. V. Eletskii, and E. V. Stepanov, “Cluster origin of fullerene solubility,” J. Phys. Chem. 98(27), 6665–6667 (1994).

    Google Scholar 

  30. H. Hungerbuehler, D. M. Guldi, and K. D. Asmus, “Incorporation of C60 into artificial lipid membranes,” J. Am. Chem. Soc. 115(8), 3386–3387 (1993).

    Google Scholar 

  31. R. V. Bensasson, E. Bienvenue, M. Dellinger, S. Leach, and P. Seta, “C60 in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation,” J. Phys. Chem. 98(13), 3492–3500 (1994).

    Google Scholar 

  32. K. N. Semenov, N. A. Charykov, and O. V. Arapov, “The solubility of fullerenes in n-alkanols-1,” Russ. J. Phys. Chem. A, Focus on Chemistry 82(8), 1318–1326 (2008).

    Google Scholar 

  33. I. Ramakanth and A. Patnaik, “Characteristics of solubilization and encapsulation of fullerene C60 in nonionic Triton X-100 micelles,” Carbon 46(4), 692–698 (2008).

    Google Scholar 

  34. Y. Tabata, Y. Murakami, and Y. Ikada, “Photodynamic effect of polyethylene glycol-modified fullerene on tumor,” Jpn. J. Cancer Res. 88(11), 1108–1116 (1997).

    Google Scholar 

  35. Y. N. Yamakoshi, T. Yagami, K. Fukuhara, S. Sueyoshi, and N. Miyata, “Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests,” J. Chem. Soc. Chem. Commun. 4, 517–518 (1994).

    Google Scholar 

  36. V. M. Torres, M. Posa, B. Srdjenovic, and A. L. Simplicio, “Solubilization of fullerene C60 in micellar solutions of different solubilizers,” Colloids & Surfaces B: Biointerfaces 82(1), 46–53 (2011).

    Google Scholar 

  37. A. Buvari-Barcza, J. Rohonczy, N. Rozlosnik, T. Gilanyi, B. Szabo, G. Lovas, T. Braun, J. Samu, and L. Barcza, “Aqueous solubilization of [60]fullerene via inclusion complex formation and the hydration of C60,” J. Chem. Soc. Perkin Trans. 2, 191–196 (2001).

    Google Scholar 

  38. C. N. Murthy, S. J. Choi, and K. E. Geckeler, “Nanoencapsulation of [60] fullerene by a novel sugar-based polymer,” J. Nanosci. Nanotechnol. 2(2), 129–132 (2002).

    Google Scholar 

  39. T. Furuishi, T. Fukami, H. Nagase, T. Suzuki, T. Endo, H. Ueda, and K. Tomono, “Improvement of solubility of C70 by complexation with cyclomaltononaose (delta-cyclodextrin),” Pharmazie 63(1), 54–57 (2008).

    Google Scholar 

  40. R. G. Alargova, Sh. Deguchi, and K. Tsujii, “Stable colloidal dispersions of fullerenes in polar organic solvents,” J. Am. Chem. Soc. 123(43), 10460–10467 (2001).

    Google Scholar 

  41. L. K. Duncan, J. R. Jinschek, and P. J. Vikesland, “C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge,” Environ. Sci. Technol. 42(1), 173–178 (2007).

    Google Scholar 

  42. G. V. Andrievsky, M. V. Kosevich, O. M. Vovk, V. S. Shelkovsky, and L. A. Vashchenko, “On the production of an aqueous colloidal solution of fullerenes,” J. Chem. Soc. Chem. Commun. (12), 1281–1282 (1995).

    Google Scholar 

  43. K. L. Chen and M. Elimelech, “Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions,” J. Colloid Interface Sci. 309(1), 126–134 (2007).

    Google Scholar 

  44. A. O. Khokhryakov, M. V. Avdeev, V. L. Aksenov, and L. A. Bulavin, “Structural organization of colloidal solution of fullerene C60 in water by data of small angle neutron scattering,” J. Mol. Liquids 127(1)–(3), 73–78 (2006).

    Google Scholar 

  45. D. Y. Lyon, L. K. Adams, J. C. Falkner, and P. J. J. Alvarez, “Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size,” Environ. Sci. Technol. 40(14), 4360–4366 (2006).

    Google Scholar 

  46. D. Bouchard, X. Ma, and C. Isaacson, “Colloidal properties of aqueous fullerenes: isoelectric points and aggregation kinetics of C60 and C60 derivatives,” Environ. Sci. Tech. 43(17), 6597–6603 (2009).

    Google Scholar 

  47. D. M. Guldi, “Capped fullerenes: stabilization of water-soluble fullerene monomers as studied by flash photolysis and pulse radiolysis,” J. Phys. Chem. A 101(21), 3895–3900 (1997).

    Google Scholar 

  48. “Guidance on sample preparation and dosimetry for the safety testing of manufactured nanomaterials: ENV/JM/MONO(2012)40,” Directorate Series on the Safety of Manufactured Nanomaterials (OECD, Environmen, Paris, 2012), no. 36.

  49. I. Gitsov, A. Simonyan, L. Wang, A. Krastanov, S. W. Tanenbaum, and D. Kiemle, “Polymer-assisted biocatalysis: unprecedented enzymatic oxidation of fullerene in aqueous medium,” J. Polym. Sci. A Polym. Chem. 50(1), 119–126 (2011).

    Google Scholar 

  50. A. B. Seabra, A. J. Paula, and N. Durán, “Redoxenzymes, cells and micro-organisms acting on carbon nanostructures transformation: a mini-review,” Biotechnol. Prog. 29(1), 1–10 (2013).

    Google Scholar 

  51. M. Calvaresi and F. Zerbetto, “Fullerene sorting proteins,” Nanoscale 3(7), 2873–2881 (2011).

    Google Scholar 

  52. W. Kratschmer, L. D. Lamb, and K. Fostiropoulos, “Solid C60: a new form of carbon,” Nature 347(6291), 354–358 (1990).

    Google Scholar 

  53. O. D. Hendrickson, I. V. Safenkova, A. V. Zherdev, B. B. Dzantiev, and V. O. Popov, “Methods of detection and identification of manufactured nanoparticles,” Biophysics 56(6), 961–986 (2011).

    Google Scholar 

  54. P. A. Troshin, H. Hoppe, A. S. Peregudov, M. Egginger, S. Shokhovets, G. Gobsch, N. S. Sariciftci, and V. F. Razumov, “[70]fullerene-based materials for organic solar cells,” Chem. Sus. Chem. 4(1), 119–124 (2011).

    Google Scholar 

  55. B. C. Thompson and J. M. Frechet, “Polymer-fullerene composite solar cells,” Angew. Chem. Int. Ed. Engl. 47(1), 58–77 (2008).

    Google Scholar 

  56. P. Anilkumar, F. Lu, L. Cao, P. G. Luo, J. H. Liu, S. Sahu, K. N. Tackett, Y. Wang, and Y. P. Sun, “Fullerenes for applications in biology and medicine,” Curr. Med. Chem. 18(14), 2045–2059 (2011).

    Google Scholar 

  57. J. L. X. Meng, X. Chen, and Y. Zhao, “Biological characterizations of [GdC82(OH)22]n nanoparticles as fullerene derivatives for cancer therapy,” Integr. Biol. (Camb.) 5(1), 43–47 (2013).

    Google Scholar 

  58. T. N. Mashino, D. Nishikawa, K. Takahashi, N. Usui, T. Yamori, M. Seki, T. Endo, and M. Mochizuki, “Antibacterial and antiproliferative activity of cationic fullerene derivatives,” Bioorg. Med. Chem. Lett. 13(24), 4395–4397 (2003).

    Google Scholar 

  59. Q. Liu, Q. Cui, X. J. Li, and L. Jin, “The applications of buckminsterfullerene C60 and derivatives in orthopaedic research,” Connect. Tissue Res. 55(2), 71–79 (2014).

    Google Scholar 

  60. Y. Fujitani, T. Kobayashi, K. Arashidani, N. Kunugita, and K. Suemura, “Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment,” J. Occup. Environ. Hyg. 5(6), 380–389 (2008).

    Google Scholar 

  61. P. H. Hoet, I. Bruske-Hohlfeld, and O. V. Salata, “Nanoparticles-known and unknown health risks,” J. Nanobiotech. 2(1), 12–27 (2004).

    Google Scholar 

  62. M. Lens, “Use of fullerenes in cosmetics,” Recent Pat. Biotechnol. 3(2), 118–123 (2009).

    Google Scholar 

  63. T. G. Smijs and J. A. Bouwstra, “Focus on skin as a possible port of entry for solid nanoparticles and the toxicological impact,” J. Biomed. Nanotechnol. 6(5), 469–484 (2010).

    Google Scholar 

  64. M. H. Al-Hallak, M. K. Sarfraz, S. Azarmi, W. H. Roa, W. H. Finlay, and R. Lobenberg, “Pulmonary delivery of inhalable nanoparticles: dry powder inhalers,” Ther. Deliv. 2(10), 1313–1324 (2011).

    Google Scholar 

  65. C. S. Yah, G. S. Simate, and S. E. Iyuke, “Nanoparticles toxicity and their routes of exposures,” Pak. J. Pharm. Sci. 25(2), 477–491 (2012).

    Google Scholar 

  66. A. M. Nystrom and B. Fadeel, “Safety assessment of nanomaterials: implications for nanomedicine,” J. Control Release 161(2), 403–408 (2012).

    Google Scholar 

  67. J. Zhao and V. Castranova, “Toxicology of nanomaterials used in nanomedicine,” J. Toxicol. Environ. Health B Crit. Rev. 14(8), 593–632 (2011).

    Google Scholar 

  68. H. Wang, S. T. Yang, A. Cao, and Y. Liu, “Quantification of carbon nanomaterials in vivo,” Acc. Chem. Res. 46(3), 750–760 (2013).

    Google Scholar 

  69. G. G. Onishchenko, I. V. Bragina, O. I. Aksenova, T. Yu. Zavistyaeva, A. L. Mishina, V. A. Tutelyan, I. V. Gmoshinskii, S. A. Khotimchenko, et al., “Procedure for assessing the toxic effect of nanomaterials in laboratory animals,” Methodical Instructions. MU 1.2.2869-11 (Federal Center of Hygiene and Epidemiology of Pospotrebnadzor, Moscow, 2011) [in Russian].

    Google Scholar 

  70. Z. Gao, B. M. Hedtke, J. A. Marsters, M. R. Lehman, T. Holmes, J. F. Lucak, L.-J.C. Ferguson, J. D. McDonald, and N. J. Walker, “Disposition of C60 fullerene after inhalation (nanoC60), intratracheal instillation, or intravenous injection in male F344 rats,” in Society of Toxicology Annual Meeting, March 15–19 2009, Baltimore, MD, USA.

  71. N. Shinohara, T. Nakazato, M. Tamura, S. Endoh, H. Fukui, Y. Morimoto, T. Myojo, M,Shimada, K. Yamamoto, H. Tao, Y. Yoshida, and J. Nakanishi, “Clearance kinetics of fullerene C60 nanoparticles from rat lungs after intratracheal C60 instillation and inhalation C60 exposure,” Toxicol. Sci. 118(2), 564–573 (2010).

    Google Scholar 

  72. M. Naota, A. Shimada, T. Morita, K. Inoue, and H. Takano, “Translocation pathway of the intratracheally instilled C60 fullerene from the lung into the blood circulation in the mouse: possible association of diffusion and caveolae-mediated pinocytosis,” Toxicol. Pathol. 37(4), 456–462 (2009).

    Google Scholar 

  73. K. Fujita, Y. Morimoto, A. Ogami, T. Myojyo, I. Tanaka, M. Shimada, W. N. Wang, S. Endoh, K. Uchida, T. Nakazato, K. Yamamoto, H. Fukui, M. Horie, Y. Yoshida, H. Iwahashi, and J. Nakanishi, “Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles,” Toxicology 258(1), 47–55 (2009).

    Google Scholar 

  74. G. L. Baker, A. Gupta, M. L. Clark, B. R. Valenzuela, L. M. Staska, S. J. Harbo, J. T. Pierce, and J. A. Dill, “Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles,” Toxicol. Sci. 101(1), 122–131 (2008).

    Google Scholar 

  75. R. Bullard-Dillard, K. E. Creek, W. A. Scrivens, and J. M. Tour, “Tissue sites of uptake of 14C-labeled C60,” Bioorg. Chem. 24(4), 376–385 (1996).

    Google Scholar 

  76. S. Yamago, H. Tokuyama, E. Nakamura, K. Kikuchi, S. Kananishi, K. Sueki, H. Nakahara, S. Enomoto, and F. Ambe, “In vivo biological behavior of a watermiscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity,” Chem. Biol. 2(6), 385–389 (1995).

    Google Scholar 

  77. N. Nikolic, S. Vranjes-Ethuric, D. Jankovic, D. Ethokic, M. Mirkovic, N. Bibic, and V. Trajkovic, “Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals,” Nanotechnology 20(38), 385102 (2009).

    Google Scholar 

  78. Z. Q. Ji, H. Sun, H. Wang, Q. Xie, Y. Liu, and Zh. Wang, “Biodistribution and tumor uptake of C60(OH)x in mice,” J. Nanoparticle Res. 8(1), 53–63 (2006).

    Google Scholar 

  79. S. C. Sumner, T. R. Fennell, R. W. Snyder, G. F. Taylor, and A. H. Lewin, “Distribution of carbon-14 labeled C60 ([14C]C60) in the pregnant and in the lactating dam and the effect of C60 exposure on the biochemical profile of urine,” J. Appl. Toxicol. 30(4), 354–360 (2010).

    Google Scholar 

  80. T. T. Mori, H. Takada, S. Ito, K. Matsubayashi, N. Miwa, and T. Sawaguchi, “Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis,” Toxicology 225(1), 48–54 (2006).

    Google Scholar 

  81. N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S. R. Wilson, and F. Moussa, “[60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity,” Nano Lett. 5(12), 2578–2585 (2005).

    Google Scholar 

  82. H. H. Chen, C. You, T. H. Ueng, S. Chen, B. J. Chen, K. J. Huang, and L. Y. Chiang, “Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats,” Toxicol. Pathol. 26(1), 143–151 (1998).

    Google Scholar 

  83. B. B. Dzantiev, S. G. Klochkov, O. D. Hendrikson, A. V. Zherdev, and S. O. Bachurin, “Study of nanoparticles localization in organs and tissues of rats after intraperitoneal and intragastrical administration,” Abstracts of the Conference “Nanosafe-2012”, November 13–15, 2012 (Grenoble, France), p. O2b-1.

  84. V. A. Shipelin, L. I. Avren’eva, G. V. Guseva, E. N. Trushina, O. K. Mustafina, A. V. Selifanov, S. Kh. Soto, G. Iu. Mal’tsev, I. V. Gmoshinskii, and S. A. Khotimchenko, “Characterization of fullerene C60 peroral toxicity to rats in the 92-day experiment,” Vopr. Pit. (5), 20–27 (2012) [in Russian].

    Google Scholar 

  85. X. R. Xia, N. A. Monteiro-Riviere, and J. E. Riviere, “Skin penetration and kinetics of pristine fullerenes (C60) topically exposed in industrial organic solvents,” Toxicol. Appl. Pharmacol. 242(1), 29–37 (2010).

    Google Scholar 

  86. S. Kato, H. Aoshima, Y. Saitoh, and N. Miwa, “Highly hydroxylated or gamma-cyclodextrin-bicapped watersoluble derivative of fullerene: the antioxidant ability assessed by electron spin resonance method and betacarotene bleaching assay,” Bioorg. Med. Chem. Lett. 19(18), 5293–5296 (2009).

    Google Scholar 

  87. S. Kato, H. Aoshima, Y. Saitoh, N. Miwa, Y. Saitoh, and N. Miwa, “Fullerene-C60/liposome complex: defensive effects against UVA-induced damages in skin structure, nucleus and collagen type I/IV fibrils, and the permeability into human skin tissue,” J. Photochem. Photobiol. B 98(1), 99–105 (2010).

    Google Scholar 

  88. G. G. Onishchenko, I. V. Bragina, O. I. Aksenova, V. Yu. Smolensky, T. Yu. Zavistyaeva, V. A. Tutelyan, I. V. Gmoshinskii, et al., “Procedure of biomedical evaluation of nanomaterials’ effects in laboratory animals by morphological indicators and metabolic parameters,” Methodical Instructions. MU 1.2.2965-11 (Federal Center of Hygiene and Epidemiology of Rospotrebnadzor, Moscow, 2011) [in Russian].

    Google Scholar 

  89. G. G. Onishchenko, I. V. Bragina, T. Yu. Zavistyaeva, V. à. Tutelyan, I. V. Gmoshinskii, S. A. Khotimchenko, et al., “Procedure for the detection and identification of nanomaterials in laboratory animals,” Methodical Instructions. MU 1.2.2874-1124 (Federal Center of Hygiene and Epidemiology of Rospotrebnadzor, Moscow, 2011) [in Russian].

    Google Scholar 

  90. V. A. Tutelyan, I. V. Gmoshinskii, S. A. Khotimchenko, M. M. Gapparov, L. S. Vasilevskaya, et al., “Procedures and methods for determining the organotropy and toxicokinetic parameters of engineered nanomaterials in tests on laboratory animals,” Guidelines. MR 1.2.0048-11 (Federal Center of Hygiene and Epidemiology of Rospotrebnadzor, Moscow, 2011) [in Russian].

    Google Scholar 

  91. G. G. Onishchenko, I. V. Bragina, T. Yu. Zavistyaeva, V. A. Tutelyan, I. V. Gmoshinskii, S. A. Khotimchenko, et al., “Identification of priority nanomaterials in the environment, living organisms and food,” Guidelines. MR 1.2.2641-10 (Federal Center of Hygiene and Epidemiology of Rospotrebnadzor, Moscow, 2010) [in Russian].

    Google Scholar 

  92. Guidelines for Pre-clinical Trials of Drugs. Part One, Ed. by A. N. Mironov (Griff & Co. Moscow, 2012) [in Russian].

    Google Scholar 

  93. OECD, Test No. 405: Acute Eye Irritation/Corrosion: OECD Publishing.

  94. OECD, Test No. 443: Extended One-Generation Reproductive Toxicity Study: OECD Publishing.

  95. OECD, Test No. 429: Skin Sensitisation: OECD Publishing.

  96. OECD, Test No. 403: Acute Inhalation Toxicity: OECD Publishing.

  97. OECD, Test No. 407: Repeated Dose 28-Day Oral Toxicity Study in Rodents: OECD Publishing.

  98. OECD, “Guidance on sample preparation and dosimetry for the safety testing of manufactured nanomaterials,” Series on the Safety of Manufactured Nanomaterials, No. 36: OECD publishing.

  99. G. Oberdorster, “Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology,” J. Intern. Med. 267(1), 89–105 (2010).

    Google Scholar 

  100. G. Oberdorster, E. Oberdorster, and J. Oberdorster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environ. Health Perspect. 113(7), 823–839 (2005).

    Google Scholar 

  101. M. Naota, A. Shimada, T. Morita, K. Inoue, and H. Takano, “Translocation pathway of the intratracheally instilled C60 fullerene from the lung into the blood circulation in the mouse: possible association of diffusion and caveolae-mediated pinocytosis,” Toxicol. Pathol. 7(4), 456–462 (2009).

    Google Scholar 

  102. K. Fujita, Y. Morimoto, A. Ogami, T. Myojyo, I. Tanaka, M. Shimada, W. N. Wang, S. Endoh, K. Uchida, T. Nakazato, K. Yamamoto, H. Fukui, M. Horie, Y. Yoshida, H. Iwahashi, and J. Nakanishi, “Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles,” Toxicology 258(1), 47–55 (2009).

    Google Scholar 

  103. Y. Morimoto, M. Hirohashi, A. Ogami, T. Oyabu, T. Myojo, K. Nishi, C. Kadoya, M. Todoroki, M. Yamamoto, M. Murakami, M. Shimada, W. N. Wang, K. Yamamoto, K. Fujita, S. Endoh, K. Uchida, N. Shinohara, J. Nakanishi, and I. Tanaka, “Inflammogenic effect of well-characterized fullerenes in inhalation and intratracheal instillation studies. Part,” Fibre Toxicol. 7, 4 (2010).

    Google Scholar 

  104. A.Y. Ogami, K. Yamamoto, Y. Morimoto, K. Fujita, M. Hirohashi, T. Oyabu, T. Myojo, K. Nishi, C. Kadoya, M. Todoroki, M. Yamamoto, M. Murakami, M. Shimada, W. N. Wang, N. Shinohara, S. Endoh, K. Uchida, J. Nakanishi, and I. Tanaka, “Pathological features of rat lung following inhalation and intratracheal instillation of C(60) fullerene,” Inhal. Toxicol. 23(7), 407–416 (2011).

    Google Scholar 

  105. C. M. Sayes, A. A. Marchione, K. L. Reed, and D. B. Warheit, “Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles,” Nano Lett. 7(8), 2399–2406 (2007).

    Google Scholar 

  106. E. J. Park, H. Kim, Y. Kim, J. Yi, K. Choi, and K. Park, “Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice,” Toxicol. Appl. Pharmacol. 244(2), 226–233 (2010).

    Google Scholar 

  107. N. R. Jacobsen, P. Moller, K. A. Jensen, U. Vogel, O. Ladefoged, S. Loft, and H. Wallin, “Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/-mice. Part,” Fibre Toxicol. 6, 2 (2009).

    Google Scholar 

  108. M. Roursgaard, S. S. Poulsen, C. L. Kepley, M. Ham- mer, G. D. Nielsen, and S. T. Larsen, “Polyhydroxylated C60 fullerene (fullerenol) attenuates neutrophilic lung inflammation in mice,” Basic Clin. Pharmacol. Toxicol. 103(4), 386–388 (2008).

    Google Scholar 

  109. J. Y. Xu, K. Han, S. X. Li, J. S. Cheng, G. T. Xu, W. X. Li, and Q. N. Li, “Pulmonary responses to polyhydroxylated fullerenols, C(60)(OH)(x),” J. Appl. Toxicol. 29(7), 578–584 (2009).

    Google Scholar 

  110. J. K. R. Folkmann, L. N. R. Jacobsen, H. Wallin, S. Loft, and P. Moller, “Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes,” Environ. Health Perspect. 117(5), 703–708 (2009).

    Google Scholar 

  111. M. K. Takahashi, H. Y. Doi, A. Hagiwara, M. Hirata- Koizumi, A. Ono, R. Kubota, T. Nishimura, and A. Hirose, “Sub-acute oral toxicity study with fullerene C60 in rats,” J. Toxicol. Sci. 37(2), 353–361 (2012).

    Google Scholar 

  112. K. Y. Yamashita, Y. Yoshioka, H. Pan, M. Taira, T. Ogura, T. Nagano, M. Aoyama, K. Nagano, Y. Abe, H. Kamada, S. I. Tsunoda, H. Aoshima, H. Nabeshi, T. Yoshikawa, and Y. Tsutsumi, “Biochemical and hematologic effects of polyvinylpyrrolidone-wrapped fullerene C60 after oral administration,” Pharmazie. 68(1), 54–57 (2013).

    Google Scholar 

  113. V. A. Shipelin, E. A. Arianova, E. N. Trushina, L. I. Avren’eva, S. Batishcheva, A. V. Cherkashin, S. Soto, N. V. Lashneva, I. V. Gmoshinskii, and S. A. Khotimchenko, “Toxicological and sanitary characteristics of fullerene C60 administered to the rat gastrointestinal tract,” Gig. Sanit. 2, 90–94 (2012).

    Google Scholar 

  114. V. A. Shipelin, E. N. Trushina, L. I. Avren’eva, S. Kh. Soto, S. Yu. Batishcheva, G. Yu. Mal’tsev, I. V. Gmoshinski, S. A. Khotimchenko, and V. A. Tu- tel’yan, “Toxicological and sanitary characteristics of fullerenol (hydroxylated fullerene C60) in 28-day in vivo experiment,” Nanotechnologies in Russia 8(11)–(12), 799–809 (2013).

    Google Scholar 

  115. A. Huczko, H. Lange, and E. Calko, “Short communication: fullerenes: experimental evidence for a null risk of skin irritation and allergy,” Fullerene Sci. Technol. 7(5), 935–939 (1999).

    Google Scholar 

  116. J. H. Draize, G. Woodard, and H. O. Calvery, “Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes,” J. Pharmacol. Exp. Then. 82, 377–390 (1944).

    Google Scholar 

  117. H. S. Aoshima, Y. Saytoh, S. Ito, S. Yamana, and N. Miwa, “Safety evaluation of highly purified fullerenes (HPFs): based on screening of eye and skin damage,” J. Toxicol. Sci. 4(5), 555–562 (2009).

    Google Scholar 

  118. S. Ito, K. Itoga, M. Yamato, H. Akamatsu, and T. Okano, “The co-application effects of fullerene and ascorbic acid on UV-B irradiated mouse skin,” Toxicology 267(1)–(3), 27–38 (2010).

    Google Scholar 

  119. M. T. Ema, J. Tanaka, N. Kobayashi, M. Naya, S. Endoh, J. Maru, M. Hosoi, M. Nagai, M. Nakajima, M. Hayashi, and J. Nakanishi, “Genotoxicity evaluation of fullerene C60 nanoparticles in a comet assay using lung cells of intratracheally instilled rats,” Regul. Toxicol. Pharmacol. 62(3), 419–424 (2012).

    Google Scholar 

  120. M. A. Nelson, F. E. Domann, G. T. Bowden, S. B. Hooser, Q. Fernando, and D. E. Carter, “Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin,” Toxicol. Ind. Health. 9(4), 623–630 (1993).

    Google Scholar 

  121. N. S. Zogovic, N. S. Nikolic, S. D. Vranjes-Djuric, L.M. Harhaji, L. M. Vucicevic, K. D. Janjetovic, M. S. Misirkic, B. M. Todorovic-Markovic, Z. M. Markovic, S. K. Milonjic, and V. S. Trajkovic, “Opposite effects of nanocrystalline fullerene (C(60)) on tumour cell growth in vitro and in vivo and a possible role of immunosupression in the cancer-promoting activity of C(60),” Biomaterials 30(36), 6940–6946 (2009).

    Google Scholar 

  122. T. H. Ueng, J. J. Kang, H. W. Wang, Y. W. Cheng, and L. Y. Chiang, “Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60,” Toxicol. Lett. 93(1), 29–37 (1997).

    Google Scholar 

  123. G. Bogdanović, V. Kojić, A. Dorđević, J. anadanović-Brunet, M. Vojinović-Miloradov, and V. Baltić, “Modulating activity of fullerol C60(OH)22 on doxorubicin-induced cytotoxicity,” Toxicology in Vitro 18(5), 629–637 (2004).

    Google Scholar 

  124. V. D. Milic, K. Stankov, R. Injac, A. Djordjevic, B. Srdjenovic, B. Govedarica, N. Radic, V. D. Simic, and B. Strukelj, “Activity of antioxidative enzymes in erythrocytes after a single dose administration of doxorubicin in rats pretreated with fullerenol C(60)(OH)(24),” Toxicol. Mech. Methods 19(1), 24–28 (2009).

    Google Scholar 

  125. T. O. Tsuchiya, I. Oguri, Y. N. Yamakoshi, and N. Miyata, “Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo,” FEBS Lett. 393(1), 139–145 (1996).

    Google Scholar 

  126. N. A. Monteiro-Riviere, K. E. Linder, A. O. Inman, J. G. Saathoff, X. R. Xia, and J. E. Riviere, “Lack of hydroxylated fullerene toxicity after intravenous administration to female Sprague-Dawley rats,” J. Toxicol. Environ. Health A 75(7), 367–373 (2012).

    Google Scholar 

  127. S. B. Lovern and R. Klaper, “Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles,” Environ. Toxicol. Chem. 25(4), 1132–1137 (2006).

    Google Scholar 

  128. E. Oberdorster, “Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass,” Environ. Health Perspect. 112(10), 1058–1062 (2004).

    Google Scholar 

  129. T. B. Henry, F. M. Menn, J. T. Fleming, J. Wilgus, R. N. Compton, and G. S. Sayler, “Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression,” Environ. Health Perspect. 115(7), 1059–1065 (2007).

    Google Scholar 

  130. B. Zhang, M. Cho, J. D. Fortner, J. Lee, C. H. Huang, J. B. Hughes, and J. H. Kim, “Delineating oxidative processes of aqueous C60 preparations: role of THF peroxide,” Environ. Sci. Technol. 43(1), 108–113 (2009).

    Google Scholar 

  131. S. Zhu, E. Oberdorster, and M. L. Haasch, “Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow,” Mar. Environ. Res. 62, S5–S9 (2006).

    Google Scholar 

  132. X. Xu, X. Wang, Y. Li, Y. Wang, and L. Yang, “A largescale association study for nanoparticle C60 uncovers mechanisms of nanotoxicity disrupting the native conformations of DNA/RNA,” Nucleic Acids Res. 40(16), 7622–7632 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. D. Hendrickson.

Additional information

Published in Russian in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 11–12.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendrickson, O.D., Zherdev, A.V., Gmoshinskii, I.V. et al. Fullerenes: In vivo studies of biodistribution, toxicity, and biological action. Nanotechnol Russia 9, 601–617 (2014). https://doi.org/10.1134/S199507801406010X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507801406010X

Keywords

Navigation