Skip to main content
Log in

Encapsulation of submicron particles with polymer

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This article presents the results of experimental studies of polymer shell formation on the surface of submicron (including nano-) particles due to mixing of a pair of two-phase gas flows of submicron particles and fine-dispersed liquid monomer droplets. The possibility of changing the polymer shell thickness on the surface of submicron particles by controlling the ratio of charges and particle sizes due to variations of electrical field strength in discharge cameras for charging and the dispersion of submicron particles and fine-dispersed liquid monomer droplets is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. O. W. Richardson, Polymer Engineering Composites (London, 1977).

    Google Scholar 

  2. I. A. Chmutin, N. G. Rvykina, I. L. Dubnikova, et al., “The way to control nanoparticles distribution uniformity in polymer matrix,” in Proc. Conf. “Nanotechnologies for the Industry 2007” (Fryazino, 2007), pp. 229–234.

    Google Scholar 

  3. O. Yu. Bogomolova, M. P. Danilaev, and Yu. E. Pol’skii, “The way to estimate a minimal thickness of polymer shell formed around submicron sized condensing center,” in Proc. Int. Sci.-Tech. Conf. “Nigmatullin Readings” (Kazan, Nov. 19–21, 2013), pp. 317–318.

    Google Scholar 

  4. M. P. Danilaev, S. A. Mikhailov, Yu. E. Pol’skii, and K. V. Faizullin, “Comparative analysis of mixing chambers for two multiphase flows of oppositely charged particles,” Izv. Vyssh. Uchebn. Zaved. Aviats. Tekhn., No. 2, 69–71 (2012).

    Google Scholar 

  5. E. A. Bogoslov, M. P. Danilaev, M. V. Efimov, S. A. Mikhailov, and Yu. E. Pol’skii, RF Patent No. 2011136827 IPC7 C08J3/12, C08J 3/28, C08J 9/14, C08J 9/00, B05D 1/04, B05C 3/00, B82Y 99/00 (2012).

  6. I. P. Vereshchagin, Corona Discharge in Electron Apparatuses (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  7. X. Zhang, F. Feng, S. Li, X. Tang, and Y. Huang, “Aerosol formation from styrene removal with AC/DC streamer corona plasma system in air,” Chem. Eng. J. 232, 139–155 (2013).

    Article  Google Scholar 

  8. V. V. Afanas’ev, M. P. Danilaev, and Yu. E. Pol’skii, “Physical fractals, structures, modes,” Nelinein. Mir 6(2), 110–113 (2008).

    Google Scholar 

  9. V. B. Oparin, M. V. Petrovskaya, and K. N. Vinogradov, “Charging and mobility of submicron and nano particles in cathode area of glowing discharge,” Izv. Samarsk. Nauchn. Tsentra Ross. Akad. Nauk 11(5(2), 408–411 (2010).

    Google Scholar 

  10. H. Yasuda, Plasma Polymerization (Academic, Orlando, 1985).

    Google Scholar 

  11. A. W. Czanderna, Methods of Surface Analysis (Elsevier, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Bogoslov.

Additional information

Original Russian Text © M.P. Danilaev, O.Yu. Bogomolova, E.A. Bogoslov, S.A. Mikhailov, Yu.E. Pol’skii, D.M. Pashin, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilaev, M.P., Bogomolova, O.Y., Bogoslov, E.A. et al. Encapsulation of submicron particles with polymer. Nanotechnol Russia 9, 645–649 (2014). https://doi.org/10.1134/S199507801406007X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507801406007X

Keywords

Navigation