Skip to main content
Log in

Nanopowders in dynamic magnetic pulse compaction processes

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A theoretical study of the magnetic pulse compaction of nanosized powders is carried out. The uniaxial pressing and the radial (biaxial) compaction of powders using z- and θ-pinch setups are analyzed. The objects of study are two model systems that correspond to alumina-based nanopowders. System I corresponds to powders not inclined to strong aggregation and system II corresponds to powders in a strong aggregate state. Owing to the inertial effects under the radial pressing of conductive shells, high pressures are reached that exceed the initial “magnetic pressure” several times. A dimensionless number is found for the z-pinch that determines the process dynamics; its value range is established where most effective, “resonance,” conditions are realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Ivanov, V. R. Khrustov, S. N. Paranin, A. I. Medvedev, A. K. Shtol’ts, O. F. Ivanova, and A. A. Nozdrin, “Stabilized zirconium oxide nanoceramics produced by nanosized powders magnetic-pulse pressing,” Fiz. Khim. Stekla 31(4), 625 (2005).

    Google Scholar 

  2. V. R. Khrustov, V. V. Ivanov, Yu. A. Kotov, A. S. Kaigorodov, and O. F. Ivanova, “Nanostructured composite ceramic materials of ZrO2-Al2O3 system,” Fiz. Khim. Stekla 33(4), 526 (2007).

    Google Scholar 

  3. V. P. Filonenko, L. G. Khvostantsev, R. Kh. Bagramov, L. I. Trusov, and V. I. Novikov, “The way to compact wolfram powders of different dispersity by means of hydrostatic pressure up to 5 GPa,” Poroshk. Metallurg., No. 4, 16 (1992).

    Google Scholar 

  4. R. Vassen and D. Stöver, “Compaction mechanisms of ultrafine SiC powders,” Powder Technol. 72, 223 (1992).

    Article  Google Scholar 

  5. M. I. Alymov, Porous Metallurgy for Nanocrystalline Materials (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  6. A. Balakrishnan, P. Pizette, C. L. Martin, S. V. Joshi, and B. P. Saha, “Effect of particle size in aggregated and agglomerated ceramic powders,” Acta Mater. 58, 802 (2010).

    Article  Google Scholar 

  7. G. Sh. Boltachev, K. E. Lukyashin, V. A. Shitov, and N. B. Volkov, “Three-dimensional simulations of nanopowder compaction processes by granular dynamics method,” Phys. Rev. E 88(1), 012209 (2013).

    Article  Google Scholar 

  8. I. Agnolin and J.-N. Roux, “Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks,” Phys. Rev. E 76, 061302 (2007).

    Article  Google Scholar 

  9. F. A. Gilabert, J.-N. Roux, and A. Castellanos, “Computer simulation of model cohesive powders: Plastic consolidation, structural changes, and elasticity under isotropic loads,” Phys. Rev. E 78, 031305 (2008).

    Article  Google Scholar 

  10. G. Sh. Boltachev and N. B. Volkov, “Simulation of nanopowder compaction in terms of granular dynamics,” Tech. Phys. 56(7), 919 (2011).

    Article  Google Scholar 

  11. G. Sh. Boltachev, N. B. Volkov, A. S. Kaigorodov, and V. P. Loznukho, “The peculiarities of uniaxial quasistatic compaction of oxide nanopowders,” Nanotech. Russ. 6(9–10), 639 (2011).

    Article  Google Scholar 

  12. G. Sh. Boltachev and V. Aleshin, “Shift and torsion contact problems for arbitrary axisymmetric normal stress distributions,” Int. J. Solids Struct. 50(19), 2894 (2013).

    Article  Google Scholar 

  13. R. D. Mindlin, “Compliance of elastic bodies in contact,” J. Appl. Mech. (Trans. ASME) 16, 259 (1949).

    Google Scholar 

  14. H. C. Hamaker, “The London — van der Waals attraction between spherical particles,” Physica 4(10), 1058 (London, 1937).

    Article  Google Scholar 

  15. G. Sh. Boltachev, N. B. Volkov, V. V. Ivanov, and S. N. Paranin, “Dynamic compaction model for a granular medium,” J. Appl. Mech. Tech. Phys., Vol. 49, No. 2, 336 (2008).

    Article  Google Scholar 

  16. G. Sh. Boltachev, N. B. Volkov, V. V. Ivanov, and S. N. Paranin, “Inertial effects that take place during pulse radial pressing of nanosized powders,” Perspekt. Mater., No. 5, 5 (2008).

    Google Scholar 

  17. G. Sh. Boltachev, N. B. Volkov, S. N. Paranin, and A. V. Spirin, “Dynamics of cylindrical conducting shells in a pulsed longitudinal magnetic field,” Tech. Phys. 55(6), 753 (2010).

    Article  Google Scholar 

  18. G. Sh. Boltachev, K. A. Nagayev, S. N. Paranin, A. V. Spirin, and N. B. Volkov, Magnetic Pulsed Compaction of Nanosized Powders (Nova Sci. Publ., New York, 2010).

    Google Scholar 

  19. E. A. Olevsky, A. A. Bokov, G. Sh. Boltachev, N. B. Volkov, S. V. Zayats, A. M. Ilyina, A. A. Nozdrin, and S. N. Paranin, “Modeling and optimization of uniaxial magnetic pulse compaction of nanopowders,” Acta Mechan. 224(12), 3177 (2013).

    Article  Google Scholar 

  20. J. Jäger, “Axisymmetric bodies of equal material in contact under torsion or shift,” Arch. Appl. Mech. 65, 478 (1995).

    Article  Google Scholar 

  21. A. I. Lur’e, 3D Problems in Elasticity Theory (Gos. izd. Tekhn.-teoret. lit., Moscow, 1955) [in Russian].

    Google Scholar 

  22. M. I. Alymov, V. A. Zelenskii, and E. I. Mal’tina, “Iron ultradispersed powders pressing,” Fiz. Khim. Obrab. Mater., No. 3, 154 (1993).

    Google Scholar 

  23. A. Castellanos, “The relationship between attractive interparticle forces and bulk behavior in dry and uncharged fine powders,” Adv. Phys. 54(4), 263 (2005).

    Article  Google Scholar 

  24. G. A. Malygin, “Factors cause deformation instability and plasticity loss of neutrons radiated cupper,” Fiz. Tverd. Tela 47(4), 632 (2005).

    Google Scholar 

  25. G. A. Malygin, “Plasticity and strength of micro- and nanocrystalline materials. Review,” Fiz. Tverd. Tela 49(6), 961 (2007).

    Google Scholar 

  26. S. A. Kotrechko, A. V. Filatov, and A. V. Ovsjannikov, “Molecular dynamics simulation of deformation and failure of nanocrystals of bcc metals,” Theor. Appl. Fracture Mech. 45(2), 92 (2006).

    Article  Google Scholar 

  27. A. P. Shpak, S. O. Kotrechko, T. I. Mazilova, and I. M. Mikhailovskij, “Inherent tensile strength of molybdenum nanocrystals,” Sci. Techn. Adv. Mater. 10(4), 045004 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sh. Boltachev.

Additional information

Original Russian Text © G.Sh. Boltachev, N.B. Volkov, E.A. Chingina, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boltachev, G.S., Volkov, N.B. & Chingina, E.A. Nanopowders in dynamic magnetic pulse compaction processes. Nanotechnol Russia 9, 650–659 (2014). https://doi.org/10.1134/S1995078014060056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078014060056

Keywords

Navigation