Nanotechnologies in Russia

, Volume 9, Issue 9–10, pp 533–540 | Cite as

Modification of polypropylene filaments with metal-containing nanoparticles immobilized in a polyethylene matrix

  • N. P. Prorokova
  • S. Yu. Vavilova
  • M. I. Biryukova
  • G. Yu. Yurkov
  • V. M. Buznik
Article

Abstract

The possibility of modifying polypropylene fibrous materials at the stage of melt spinning through the introduction of composite powders based on metal-containing nanoparticles immobilized in a high-pressure polyethylene matrix during their synthesis has been investigated. It has been shown that the use of immobilized iron-, manganese-, and nickel-containing nanoparticles as a modifier creates conditions which prevent their aggregation during the melt spinning of the polypropylene filament and ensures the retention of stability of sizes of nanoparticles. It has been established that the introduction of metal-containing nanoparticles immobilized in polyethylene into polypropylene at the stage of filament spinning yields the high uniformity of their distribution in the polypropylene filaments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. E. Geller, “Whether it is possible to synthesize nanocomposite textile fibers,” Khim. Volokna, No. 2, 3–9 (2013).Google Scholar
  2. 2.
    N. P. Prorokova, S. Yu. Vavilova, T. Yu. Kumeeva, and V. M. Buznik, “Surface properties of polypropylene fibrous materials modified by ultrafine polytetrafluorethylene,” Fizikokhim. Poverkhn. Zashchita Mater. 49(1), 104–110 (2013).Google Scholar
  3. 3.
    Yu. D. Tret’yakov, “Self-organization processes in materials chemistry,” Usp. Khim. 72(8), 731–763 (2003).Google Scholar
  4. 4.
    S. P. Gubin, I. D. Kosobudskii, T. A. Petrakovskii, et al., “Ligand-free metallic clusters in “inert” polymeric matrix,” Dokl. Akad. Nauk SSSR 260(3), 655–657 (1981).Google Scholar
  5. 5.
    I. D. Kosobudskii and G. Yu. Yurkov, “Nanosized metallic particles in polymeric matrixes. II. Synthesis, physicochemical properties, application,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 43(5), 3–19 (2000).Google Scholar
  6. 6.
    S. P. Gubin, Yu. I. Spichkin, Yu. A. Koksharov, et al., “Magnetic and structural properties of Co nanoparticles in polymeric matrix,” J. Magn. Magn. Mater. 265(2), 234–242 (2003).CrossRefGoogle Scholar
  7. 7.
    T. N. Rostovshchikova, O. I. Kiseleva, G. Yu. Yurkov, et al., “Reaction catalysis of chlorolefines of allylic structure by nanosized iron oxides,” Vestn. Mosk. Univ. Ser. 2, Khim. 42(5), 419–425 (2001).Google Scholar
  8. 8.
    S. Yu. Vavilova, N. N. Prorokova, and A. P. Pikalov, “How formation condition and oriented extraction of polypropylene fibers influence onto its physical and mechanical properties,” Izv. Vyssh. Uchebn. Zaved. Tekhnol. Legk. Prom. 12(2), 17–20 (2011).Google Scholar
  9. 9.
    S. P. Gubin, Yu. I. Spichkin, G. Yu. Yurkov, and A. M. Tishin, “Nanomaterials for high density magnetic data storage,” Russ. J. Inorg. Chem. 47(Suppl. 1), 32–67 (2002).Google Scholar
  10. 10.
    G. Yu. Yurkov, S. P. Gubin, D. A. Pankratov, et al., “Ferrum oxide (III) nanoparticles in polyethylene matrix,” Neorg. Mater. 38(2), 186–195 (2002).CrossRefGoogle Scholar
  11. 11.
    S. P. Gubin, G. Yu. Yurkov, and I. D. Kosobudsky, “Nanomaterials based on metal-containing nanoparticles in polyethylene and other carbon-chain polymers,” Int. J. Mater. Product Technol. 23(1–2), 2–25 (2005).Google Scholar
  12. 12.
    T. Sanchez-Monjaras, A. V. Gorokhovsky, and J. I. Escalante-Garcia, “Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO2/K2O miolar ratio,” J. Am. Ceram. Soc. 91(9), 3058–3065 (2008).CrossRefGoogle Scholar
  13. 13.
    A. V. Gorokhovskii, I. D. Kosobudskii, E. V. Tret’yachenko, et al., “Potassium polytitanates intercalated by nickel ions and their thermal transformations,” Zh. Neorg. Khim. 56(11), 1775–1778 (2011).Google Scholar
  14. 14.
    V. N. Kuleznev, Polymers Mixtures and Alloys (Lecture Summary) (Nauchnye osnovy i tekhnologii, St. Petersburg, 2013) [in Russian].Google Scholar
  15. 15.
    P. I. Misurkin, S. S. Rozhkov, V. A. Timofeeva, and A. B. Solov’eva, “Schungite filler effect onto composite structure based on polypropylene-polyethylene mixture,” in Proc. 14th All-Russian Conf. “Structure and Dynamics of Molecular Systems” (Yal’chik, 2007), p. 149.Google Scholar
  16. 16.
    A. E. Zavadskii, S. Yu. Vavilova, and N. P. Prorokova, “X-ray texture analysis for newly formed polypropylene fibers,” Khim. Volokna, No. 3, 22–26 (2013).Google Scholar
  17. 17.
    V. A. Usenko, Processing Features of Chemical Fibers Textile (Khimiya, Moscow, 1975) [in Russian].Google Scholar
  18. 18.
    D. Godovsky, I. Chmutin, A. Ponomarenko, et al., “The peculiarities in percolation behavior of some conducting polymer-composites,” Synth. Met. 66, 19–23 (1994).CrossRefGoogle Scholar
  19. 19.
    D. Yu. Godovsky, “Electron behaviour and magnetic properties of polymer-nanocomposites,” Adv. Polym. Sci. 119, 79–122 (1995).CrossRefGoogle Scholar
  20. 20.
    O. A. Moskalyuk, A. N. Aleshin, E. S. Tsobkallo, A. V. Krestinin, and V. E. Yudin, “Electrical conductivity of polypropylene fibers with dispersed carbon fillings,” Fiz. Tverd. Tela. 54(10), 1993–1998 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. P. Prorokova
    • 1
  • S. Yu. Vavilova
    • 1
  • M. I. Biryukova
    • 2
  • G. Yu. Yurkov
    • 3
  • V. M. Buznik
    • 3
  1. 1.Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia
  2. 2.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  3. 3.All-Russian Research Institute of Aviation MaterialsMoscowRussia

Personalised recommendations