Skip to main content

Advertisement

Log in

Thermal stability of metal-silicon-carbon nanocomposites

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The effect of heat treatment on the structure and chemical and phase composition of tantalum-containing films with a silicon-carbon matrix has been studied by high-resolution transmission electron microscopy (HRTEM), energy dispersive microanalysis, ultrasoft X-ray emission spectroscopy (USXES), and electron energy-loss spectroscopy (EELS). It was shown that the main cause of the heat treatment influence is the interaction of the material with oxygen. A model of the processes that occur and a method for improving the thermal stability of silicon-carbon nanocomposites are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Won Jae Yang, Yong-Ho Choab, Tohru Sekinoc, Kwang Bo Shima, Koichi Niiharac, and Keun Ho Auha, “Thermal stability evaluation of diamond-like nanocomposite coatings,” Thin Solid Films, 434, 49–54 (2003).

    Article  Google Scholar 

  2. V. F. Dorfman, “Diamond-like nanocomposites (DLN),” Thin Solid Films, 212, 267–273 (1992).

    Article  Google Scholar 

  3. A. I. Popov and M. L. Shupegin, “The way to diagnose a structure of silicon-carbon nanocomposites films,” in Proc. 5th All-Russian School-Seminar for Students, Postgraduates and Young Scientists in the Field of “Nanomaterials and Nanostructures Diagnostics” (Ryazan State Radio Engineering Institute, Ryazan, 2012), Vol. 2, pp. 154–170.

    Google Scholar 

  4. J. Z. Wan, F. H. Pollak, and B. F. J. Dorfman, “Micro-Raman study of diamondlike atomic-scale composite films modified by continuous wave laser annealing,” Appl. Phys. 81(9), 6407–6414 (1997).

    Article  Google Scholar 

  5. M. L. Shupegin, “The way to deposit metal-contain nanocomposite films with silicon-carbon matrix,” Zavod. Lab. Diagn. Mater., No. 02(79), 28–32 (2013).

    Google Scholar 

  6. A. I. Popov, M. Yu. Presnyakov, and M. L. Shupegin, “Nanostrukturirovanie plenok metallosoderzhashchikh kremnii-uglerodnykh kompozitov,” Ross. Nanotekhnol. 9(5–6) (2014).

    Google Scholar 

  7. H. Nowotny and H. Auer-Welsbach, J. Phys. Chem., 65, 1596–1598 (1961).

    Article  Google Scholar 

  8. M. Yu. Presnyakov, A. I. Popov, N. D. Vasil’eva, and M. L. Shupegin, “Electron-microscopy study of the distribution of dopants (Ta) in Si-C nanocomposite films,” J. Surface Investig. X-Ray, Synchrotron Neutron Techn. 7(4), 724 (2013).

    Article  Google Scholar 

  9. A. I. Popov, M. Yu. Presnyakov, and M. L. Shupegin, “Thermal processing effect onto structure of amorphous films made of metal-contain silicon-carbon nanocomposites,” Vestn. Ryazansk. Gos. Radiotekhn. Univ., Issue 4, Part 2, 56–59 (2012).

    Google Scholar 

  10. A. S. Borisova, N. D. Vasil’eva, A. I. Popov, and M. L. Shupegin, “Electron and scanning probe microscopy for metal containing diamond-like nanocomposites,” Vestn. Mosk. Energ. Inst., No. 5, 82–84 (2004).

    Google Scholar 

  11. V. A. Terekhov, V. M. Kashkarov, E. Y. Manukovskii, A. V. Schukarev, and E. P. Domashevskaya, J. Electron. Spectrosc. Related Phenom. 114–116, 895–900 (2001).

    Article  Google Scholar 

  12. L. A. Garvie, et al., Amer. Mineralog. 79, 411 (1994).

    Google Scholar 

  13. Yougui Liao, Practical Electron Microscopy and Database. http://www.globalsino.com/EM/

  14. Stijn Schaltin, Lucia D’Urzo, Qiang Zhao, André Vantomme, Harald Plank, Gerald Kothleitner, Christian Gspan, Koen Binnemans, and Jan Fransaer, “Direct electroplating of copper on tantalum from ionic liquids in high vacuum: origin of the tantalum oxide layer,” Phys. Chem. Chem. Phys. 14, 13624–13629 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Presniakov.

Additional information

Original Russian Text © M.Yu. Presniakov, A.I. Popov, D.S. Usol’tseva, M.L. Shupegin, A.L. Vasiliev, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 9–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Presniakov, M.Y., Popov, A.I., Usol’tseva, D.S. et al. Thermal stability of metal-silicon-carbon nanocomposites. Nanotechnol Russia 9, 518–532 (2014). https://doi.org/10.1134/S1995078014050139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078014050139

Keywords

Navigation