Advertisement

Nanotechnologies in Russia

, Volume 9, Issue 9–10, pp 518–532 | Cite as

Thermal stability of metal-silicon-carbon nanocomposites

  • M. Yu. PresniakovEmail author
  • A. I. Popov
  • D. S. Usol’tseva
  • M. L. Shupegin
  • A. L. Vasiliev
Article

Abstract

The effect of heat treatment on the structure and chemical and phase composition of tantalum-containing films with a silicon-carbon matrix has been studied by high-resolution transmission electron microscopy (HRTEM), energy dispersive microanalysis, ultrasoft X-ray emission spectroscopy (USXES), and electron energy-loss spectroscopy (EELS). It was shown that the main cause of the heat treatment influence is the interaction of the material with oxygen. A model of the processes that occur and a method for improving the thermal stability of silicon-carbon nanocomposites are proposed.

Keywords

High Resolution Transmission Electron Microscopy Elec Tron Energy Loss Spectroscopy High Resolution Transmission Electron Microscopy Image Elec Tron Energy Loss Spectroscopy Spectrum Carbon NANOCOMPOSITES 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Won Jae Yang, Yong-Ho Choab, Tohru Sekinoc, Kwang Bo Shima, Koichi Niiharac, and Keun Ho Auha, “Thermal stability evaluation of diamond-like nanocomposite coatings,” Thin Solid Films, 434, 49–54 (2003).CrossRefGoogle Scholar
  2. 2.
    V. F. Dorfman, “Diamond-like nanocomposites (DLN),” Thin Solid Films, 212, 267–273 (1992).CrossRefGoogle Scholar
  3. 3.
    A. I. Popov and M. L. Shupegin, “The way to diagnose a structure of silicon-carbon nanocomposites films,” in Proc. 5th All-Russian School-Seminar for Students, Postgraduates and Young Scientists in the Field of “Nanomaterials and Nanostructures Diagnostics” (Ryazan State Radio Engineering Institute, Ryazan, 2012), Vol. 2, pp. 154–170.Google Scholar
  4. 4.
    J. Z. Wan, F. H. Pollak, and B. F. J. Dorfman, “Micro-Raman study of diamondlike atomic-scale composite films modified by continuous wave laser annealing,” Appl. Phys. 81(9), 6407–6414 (1997).CrossRefGoogle Scholar
  5. 5.
    M. L. Shupegin, “The way to deposit metal-contain nanocomposite films with silicon-carbon matrix,” Zavod. Lab. Diagn. Mater., No. 02(79), 28–32 (2013).Google Scholar
  6. 6.
    A. I. Popov, M. Yu. Presnyakov, and M. L. Shupegin, “Nanostrukturirovanie plenok metallosoderzhashchikh kremnii-uglerodnykh kompozitov,” Ross. Nanotekhnol. 9(5–6) (2014).Google Scholar
  7. 7.
    H. Nowotny and H. Auer-Welsbach, J. Phys. Chem., 65, 1596–1598 (1961).CrossRefGoogle Scholar
  8. 8.
    M. Yu. Presnyakov, A. I. Popov, N. D. Vasil’eva, and M. L. Shupegin, “Electron-microscopy study of the distribution of dopants (Ta) in Si-C nanocomposite films,” J. Surface Investig. X-Ray, Synchrotron Neutron Techn. 7(4), 724 (2013).CrossRefGoogle Scholar
  9. 9.
    A. I. Popov, M. Yu. Presnyakov, and M. L. Shupegin, “Thermal processing effect onto structure of amorphous films made of metal-contain silicon-carbon nanocomposites,” Vestn. Ryazansk. Gos. Radiotekhn. Univ., Issue 4, Part 2, 56–59 (2012).Google Scholar
  10. 10.
    A. S. Borisova, N. D. Vasil’eva, A. I. Popov, and M. L. Shupegin, “Electron and scanning probe microscopy for metal containing diamond-like nanocomposites,” Vestn. Mosk. Energ. Inst., No. 5, 82–84 (2004).Google Scholar
  11. 11.
    V. A. Terekhov, V. M. Kashkarov, E. Y. Manukovskii, A. V. Schukarev, and E. P. Domashevskaya, J. Electron. Spectrosc. Related Phenom. 114–116, 895–900 (2001).CrossRefGoogle Scholar
  12. 12.
    L. A. Garvie, et al., Amer. Mineralog. 79, 411 (1994).Google Scholar
  13. 13.
    Yougui Liao, Practical Electron Microscopy and Database. http://www.globalsino.com/EM/
  14. 14.
    Stijn Schaltin, Lucia D’Urzo, Qiang Zhao, André Vantomme, Harald Plank, Gerald Kothleitner, Christian Gspan, Koen Binnemans, and Jan Fransaer, “Direct electroplating of copper on tantalum from ionic liquids in high vacuum: origin of the tantalum oxide layer,” Phys. Chem. Chem. Phys. 14, 13624–13629 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. Yu. Presniakov
    • 1
    • 3
    Email author
  • A. I. Popov
    • 1
  • D. S. Usol’tseva
    • 2
  • M. L. Shupegin
    • 1
  • A. L. Vasiliev
    • 3
  1. 1.National Research University “Moscow Power Engineering Institute”MoscowRussia
  2. 2.Voronezh State UniversityVoronezhRussia
  3. 3.National Research Centre “Kurchatov Institute”MoscowRussia

Personalised recommendations