Skip to main content
Log in

New possibilities to obtain ceramic nanoheterostructures with enhanced ionic conductivity

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

New possibilities to improve the transport characteristics of ceramic electrode materials, which are important for improvement high-energy electrochemical devices, lithium-ion batteries (LIBs), and solid oxide fuel cells (SOFCs), have been determined. Since the full-scale search for new electrochemically active inorganic structures does not promise substantial progress, it is topical to use the possibilities associated with optimizing the structural parameters of already known materials. It is shown that an enhancement in the specific power of these devices associated with an increase in the ionic conductivity of electrode materials can be achieved at the expense of a combination of size effects and experimentally proven effects of amorphization, i.e., the effects of nonautonomic phases formed on the interfaces of composites from incommensurate structural elements. They can provide a substantial increase in the diffusion mobility of lithium and oxygen ions at intergrain and interphase boundaries. Simple experimental methods to obtain such multi-structured nanomaterials based on electrochemically active phases for LIB positive electrodes are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F. Uvarov, Composite Solid Electrolytes (Siberian Branch RAS, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  2. H. Mehrer, Diffusion in Solids-Fundamentals, Methods, Materials, Diffusion-controlled Processes Textbook (Springer, 2007).

    Google Scholar 

  3. D. S. Wilkinson, Mass Transport in Solid and Fluids (Univ. Press, Cambridge, 2000).

    Google Scholar 

  4. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (Chapman & Hall, 1992).

    Book  Google Scholar 

  5. A. J. Bard and J. R. Faulkner, Electrochemical Methods, 2nd ed. (Wiley, New York, 2001).

    Google Scholar 

  6. E. L. Cussler, Diffusion. Mass Transfer in Fluid Systems (Univ. Press, Cambridge, 1984).

    Google Scholar 

  7. D. Morgan, A. Van der Ven, and G. Ceder, Electrochem. Sol.-St. Lett. 7(2), A30 (2004).

    Google Scholar 

  8. C. Ouyang, S. Shi, Z. Wang, X. Huang, and L. Chen, Phys. Rev. B 69, 104303 (2004).

    Article  Google Scholar 

  9. C. Wolverton and A. Zunger, Phys. Rev. B 57, 2242 (1998).

    Article  Google Scholar 

  10. J. B. Goodenough, Solid Sate Ionics 69, 184 (1994).

    Article  Google Scholar 

  11. J. C. Fisher, J. Appl. Phys. 22(1), 74 (1951).

    Article  Google Scholar 

  12. M. Park, X. Zhang, M. Chung, G. B. Less, and A. M. Sastry, J. Power Sources 195(24), 7904 (2010).

    Article  Google Scholar 

  13. S. Shi, L. Liu, C. Ouyang, D. S. Wang, Z. Wang, L. Chen, and X. Huang, Phys. Rev. B 68, 195108-1 (2003).

    Google Scholar 

  14. Y. N. Xu, S. Y. Chung, J. T. Bloking, Y. M. Chiang, and W. Y. Ching, Electrochem. Solid-State Lett. 7(6), A131 (2004).

    Article  Google Scholar 

  15. P. P. Prosini, M. Lisi, D. Zane, and M. Pasquali, Solid State Ionics 148, 45 (2002).

    Article  Google Scholar 

  16. A. Van der Ven, J. Bhattacharya, and A. A. Belak, Acc. Chem. Res. 46(5), 1216 (2013).

    Article  Google Scholar 

  17. A. Van der Ven, M. K. Aydinol, G. Ceder, and G. Kresse, J. Hafner, Phys. Rev. 58, 2975 (1998).

    Google Scholar 

  18. C. Wolverton and A. Zunger, Phys. Rev. Lett. 81, 606 (1998).

    Article  Google Scholar 

  19. A. Van der Ven, G. Ceder, M. Asta, and P. D. Tepesch, Phys. Rev. B 64, 184307 (2001).

    Article  Google Scholar 

  20. A. Van der Ven, J. C. Thomas, Q. Xu, B. Swoboda, and D. Morgan, Phys. Rev. B 78, 104306 (2008).

    Article  Google Scholar 

  21. J. Bhattacharya and A. Van der Ven, Phys. Rev. 83, 144302 (2011).

    Article  Google Scholar 

  22. A. Van der Ven and G. Ceder, Electrochem. Commun. 6(10), 1045 (2004).

    Article  Google Scholar 

  23. M. S. Whittingham, Chem. Rev. 104(10), 4271 (2004).

    Article  Google Scholar 

  24. J. Bhattacharya and A. Van der Ven, Phys. Rev. B 81(10), 104304 (2010).

    Article  Google Scholar 

  25. F. Zhou, T. Maxisch, and G. Ceder, Phys. Rev. Lett. 97(15), 155704 (2006).

    Article  Google Scholar 

  26. A. S. Andersson, B. Kalska, L. Haggstorm, and J. O. Thomas, Solid State Ionics 130, 41 (2000).

    Article  Google Scholar 

  27. C. Delacourt, P. Poizot, J.-M. Tarascon, and C. Masquelier, Nature Mater. 5, 254 (2005).

    Article  Google Scholar 

  28. C. Delacourt, J. Rodriguez-Carvajal, B. Schmitt, J.-M. Tarascon, and C. Masquelier, Solid State Sci. 7, 1506 (2005).

    Article  Google Scholar 

  29. U. Muller, Structural Inorganic Chemistry (John Wiley and Sons, 2006).

    Book  Google Scholar 

  30. K. Dokko, M. Mohamedi, Y. Fujita, T. Itoh, M. Nishizawa, M. Umeda, and I. Uchida, J. Electrochem. Soc. 148(5), A422 (2001).

    Article  Google Scholar 

  31. J. Barker, R. Pynenburg, R. Koksbang, and M. Y. Saidi, Electrochim. Acta 41(15), 2481 (1996).

    Article  Google Scholar 

  32. S. Levasseur, M. Menetrier, and C. Delmas, Chem. Mater. 14, 3584 (2002).

    Google Scholar 

  33. G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    Google Scholar 

  34. K. Toyoura, Y. Koyama, A. Kuwabara, F. Oba, and I. Tanaka, Phys. Rev. B 78(21), 214303 (2008).

    Article  Google Scholar 

  35. J. Maier, Chem. Mater. 26(1), 348 (2014).

    Article  Google Scholar 

  36. M. Okubo, E. Hosono, T. Kudo, H. S. Zhou, and I. Honma, Solid State Ionic 180, 612–615 (2009).

    Article  Google Scholar 

  37. D. Aurbach, M. D.. Levi, E. Levi, H. Teller, B. Markovsky, G. Salitra, U. Heider, and L. Heider, J. Electrochem. Soc. 145(9), 3024–3034 (1998).

    Article  Google Scholar 

  38. I. Kaur and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion (Ziegler Press, Stuttgart, 1988).

    Google Scholar 

  39. N. F. Uvarov and V. V. Boldyrev, Usp. Khim. 70(4), 307 (2001).

    Article  Google Scholar 

  40. B. S. Bokshtein, I. V. Kopetskii, and L. S. Shvindlerman, Thermodynamics and Kinetics of Grain Boundary in Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  41. V. N. Chuvil’deev, Nonequilibrium Grain Boundaries in Metals. Theory and Applications (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  42. H. C. Yu, A. Van der Ven, and K. Thorntona, Appl. Phys. Lett. 93, 091908 (2008).

    Article  Google Scholar 

  43. J. Maier, Solid State Ionics 70/71, 43 (1994).

    Article  Google Scholar 

  44. I. Kosacki, B. Gorman, and H. U. Anderson, Electrochem. Soc. Proc. 97, 631 (1998).

    Google Scholar 

  45. I. Kosacki, C. M. Rouleau, P. F. Becher, J. Bentley, and D. H. Lowndes, Solid State Ionics 176, 1319 (2005).

    Article  Google Scholar 

  46. A. B. Yaroslavtsev, Usp. Khim. 78(11), 1094 (2009).

    Article  Google Scholar 

  47. V. S. Pervov, I. D. Mikheikin, E. V. Makhonina, and V. D. Butskii, Usp. Khim. 72(9), 852 (2003).

    Article  Google Scholar 

  48. V. S. Pervov and A. E. Zotova, Chem. Phys. Chem. 14(17), 3865 (2013).

    Google Scholar 

  49. V. M. Zalkin, Zh. Fiz. Khim. 58, 1320 (1984).

    Google Scholar 

  50. Zh. V. Dobrokhotova, E. V. Makhonina, R. A. Zvinchuk, O. Yu. Pankratova, and V. S. Pervov, Russ. J. Inorg. Chem. 50(2), 286 (2005).

    Google Scholar 

  51. V. S. Pervov and A. E. Zotova, Inorg. Mater. 49(5), 534 (2013).

    Article  Google Scholar 

  52. V. S. Pervov, E. V. Makhonina, A. E. Zotova, and A. Y. Zavrazhnov, Inorg. Mater. 47(13), 1407 (2011).

    Article  Google Scholar 

  53. J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S. J. Pennycook, and J. Santamaria, Science 321, 676 (2008).

    Article  Google Scholar 

  54. C. Peters, “Grain-size effects in nanoscaled electrolyte and cathode thin films for solid oxide fuel cells (SOFC),” Thesis (Univ. Karlsruhe, 2008).

    Google Scholar 

  55. A. J. Darbandi, “Nanoparticulate cathode films for low temperature solid oxide fuel cells,” Thesis (Tech. Univ. Darmstadt, 2012).

    Google Scholar 

  56. J.-H. Ju and K.-S. Ryu, J. Alloys Comp. 509, 7985 (2011).

    Article  Google Scholar 

  57. K.-S. Lee, S.-T. Myung, and Y.-K. Sun, J. Power Sources 195, 6043 (2010).

    Article  Google Scholar 

  58. T. Mei, Y. Zhu, K. Tang, and Y. Qian, RSC Adv. 2, 12886 (2012).

    Article  Google Scholar 

  59. B. Fakhl’man, Chemistry of New Materials and Nanotechnologies (Dolgoprudnyi, Intellekt, 2011) [in Russian].

    Google Scholar 

  60. Ya. V. Shatilo, E. V. Makhonina, V. S. Pervov, V. S. Dubasova, A. F. Nikolenko, Zh. V. Dobrokhotova, and I. A. Kedrinskii, Inorg. Mater. 42(7), 782 (2006).

    Article  Google Scholar 

  61. A. E. Zotova, “Multicomponent cathode materials for power-intensive lithium-ionic accumulators,” Extended Abstract of Candidate’s Dissertation in Chemical Sciences (Moscow, 2013).

    Google Scholar 

  62. C. M. Breneman, L. C. Brinson, L. S. Schadler, B. Natarajan, M. Krein, K. Wu, L. Morkowchuk, Y. Li, H. Deng, and D. Gai, Adv. Funct. Mater. 23(46), 5746 (2013).

    Article  Google Scholar 

  63. E. Burello and A. P. Worth, “QSAR modeling of nanomaterials,” Wiley Interdiscipl. Rev.: Nanomed. Nanobiotechnol. 3, 298 (2011).

    Google Scholar 

  64. D. Fourches, D. Pu, C. Tassa, R. Weissleder, S. Y. Shaw, R. J. Mumper, and A. Tropsha, ACS Nano 4, 5703 (2010).

    Article  Google Scholar 

  65. D. J. Scott, P. V. Coveney, J. A. Kilner, J. C. H. Rossiny, and N. M. N. Alford, J. Europ. Ceram. Soc. 27, 4425 (2007).

    Article  Google Scholar 

  66. D. J. Scott, S. Manos, and P. V. Coveney, J. Chem. Inf. Model. 48, 262 (2008).

    Article  Google Scholar 

  67. www.foxd.org.in

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Pervov.

Additional information

Original Russian Text © V.S. Pervov, E.V. Makhonina, A.E. Zotova, N.V. Kireeva, I.-M.A. Kedrinsky, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervov, V.S., Makhonina, E.V., Zotova, A.E. et al. New possibilities to obtain ceramic nanoheterostructures with enhanced ionic conductivity. Nanotechnol Russia 9, 347–355 (2014). https://doi.org/10.1134/S1995078014040144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078014040144

Keywords

Navigation