Skip to main content
Log in

Alumina nanofibrous structural self-organization in hollow nanotubes caused by hydrogen treatment

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The dependence of high-temperature hydrogen activation on the structure of nanofibrous alumina (filament diameter of 5 nm) was shown. Due to self-organization, nanofibers are twisted in spirals and then in a second stage the spirals interlock and form alumina tubes, which then transform into bundles. In the process of hydrogen activation, the specific surface area changes and amorphous alumina nanowires develop into a nanocrystalline phase. TEM investigations showed that high-temperature hydrogen activation led to the self-organization of the alumina nanofibrous structure into hollow nanotubes with a diameter close to 30 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  2. Yu. A. Kotov, “Electric explosion of wires as a method for preparation of nanopowders,” J. Nanopart. Res. 5(5–6), 539 (2003).

    Article  Google Scholar 

  3. Yu. A. Kotov, I. V. Beketov, A. I. Medvedev, and O. R. Timoshenkova, “Synthesizing aluminum nanoparticles in an oxide shell,” Nanotech. Russ. 4(5–6), 354 (2009).

    Article  Google Scholar 

  4. V. V. Ivanov, A. S. Kaigorodov, V. R. Khrustov, S. N. Paranin, and A. V. Spirin, “Strong ceramics based on aluminum oxide produced by composite nanopowders magnetic-pulse pressuring,” Ross. Nanotekhnol. 1(1–2), 201–207 (2006).

    Google Scholar 

  5. B. E. Yoldas, Amer. Ceram. Soc. Bull. 3, 289 (1975).

    Google Scholar 

  6. E. V. Parkhomchuk, K. A. Sashkina, N. A. Rudina, A. G. Okunev, and V. N. Parmon, “Temperature synthesis of 3D structured macroporous oxides,” Al’ternat. Energet. Ekol., No. 10, 107–111 (2011).

    Google Scholar 

  7. J. B. Peri and R. Hunnan, J. Phys. Chem. 64(10), 1526 (1960).

    Google Scholar 

  8. J.-L. Vignes, C. Di Frappart, T. Costanzo, J.-C. Rouchaud, L. Mazerolles, and D. Michel, “Ultraporous monoliths of alumina prepared at room temperature by aluminium oxidation,” J. Mater. Sci. 43, 1234–1240 (2008).

    Article  Google Scholar 

  9. O. K. Krasil’nikova, A. S. Pogosyan, N. V. Serebryakova, T. Yu. Grankina, and A. N. Khodan, “Synthesis of carbon nanomaterials with porous alumina as a template,” Protect. Met. 44(4), 362–366 (2008).

    Article  Google Scholar 

  10. R. Sh. Askhadullin, A. A. Simakov, and Yu. M. Sysoev, RF Patent No. 2150429 (1998).

  11. Naofumi Nagai, Kazuaki Ihara, Ayaka Itoi, Tetsuya Kodaira, Hiroshi Takashima, Yukiya Hakuta, Kyoko K. Bando, Naotsugu Itoh, and Fujio Mizukami, “Fabrication of boehmite and Al2O3 nonwovens from boehmite nanofibres and their potential as the sorbent,” J. Mater. Chem. 22, 21225–21231 (2012).

    Google Scholar 

  12. E. B. Markova, O. K. Krasil’nikova, and Yu. M. Serov, “Propane catalytic conversion into ethylene at activated nanofibrous aluminum oxide aerogel,” Neftepererab. Neftekhim., No. 3, 8–12 (2013).

    Google Scholar 

  13. O. K. Krasil’nikova, A. S. Pogosyan, N. V. Serebryakova, T. Yu. Grankina, and A. N. Khodan, “The way to produce carbon nanomaterials by using porous aluminum oxide as template,” Fizikokhim. Poverkhn. Zashchita Mater. 44(4), 389–394 (2008).

    Google Scholar 

  14. E. B. Markova, O. K. Krasil’nikova, Yu. M. Serov, and V. V. Kopylov, “Research of nanofibrous catalysts based on aluminum and titanium oxides in propane cracking reactions,” Butlerov. Soobshch. 34(4), 69–74 (2013).

    Google Scholar 

  15. A. S. Pogosyan, O. K. Krasil’nikova, T. Yu. Grankina, and N. V. Serebryakova, “De-hydration effect onto porous structure of monolithic aerogels based on fibrous aluminum oxyhydroxide,” Fizikokhim. Poverkhn. Zashchita Mater. 47(5), 1–7 (2011).

    Google Scholar 

  16. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Acad. Press, 1982).

    Google Scholar 

  17. M. M. Dubinin, Chemistry and Physics of Carbon. Marcel Dekker (New York, 1966), Vol. 2, p. 51.

    Google Scholar 

  18. A. M. Voloshchuk and M. M. Dubinin, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 2, 277 (1988).

    Google Scholar 

  19. M. Robitzer, A. Tourrette, R. Horga, R. Valentin, M. Boissiere, J. M. Devoisselle, and F. Di Renzo, “Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels,” Quignard F. Carbohydrate Polym. 85, 44–53 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Markova.

Additional information

Original Russian Text © E.B. Markova, O.K. Krasil’nikova, Yu.M. Serov, V.V. Kurilkin, V.N. Simonov, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markova, E.B., Krasil’nikova, O.K., Serov, Y.M. et al. Alumina nanofibrous structural self-organization in hollow nanotubes caused by hydrogen treatment. Nanotechnol Russia 9, 441–447 (2014). https://doi.org/10.1134/S1995078014040119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078014040119

Keywords

Navigation