Advertisement

Nanotechnologies in Russia

, Volume 9, Issue 7–8, pp 363–368 | Cite as

Thin partially reduced oxide-graphene films: structural, optical, and electrical properties

  • G. N. Alexandrov
  • S. A. SmagulovaEmail author
  • A. N. Kapitonov
  • F. D. Vasil’eva
  • I. I. Kurkina
  • P. V. Vinokurov
  • V. B. Timofeev
  • I. V. Antonova
Article

Abstract

High-resistive (1012 Ohm/□) oxide-graphene films with thickness varying from 5 nm to several micrometers were produced and studied. Films of 5–150 nm on glass had a transparency of 93–98% for wave-lengths of 400–700 nm, while the transparency of a suspended film with an area of 2–3 cm2 and thickness of 200–400 nm amounted to 82–90%. The durable reduction of such films in hydrazine vapor results in a resistance decrease to 104 Ohm/□. A new approach is proposed which allows us to reduce in hydrazine vapor only the upper layers of an oxide-graphene film and form thin-film structures comprising conducting and insulating layers. The films are promising for a wide spectrum of optical and electronic applications, including flexible electronics.

Keywords

Graphene Oxide Anodize Aluminum Oxide Reduce Graphene Oxide Graphene Film Graphene Paper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater 22(22), 2392 (2010).CrossRefGoogle Scholar
  2. 2.
    D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448, 457 (2007).CrossRefGoogle Scholar
  3. 3.
    I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, “Reduced graphene oxide by chemical graphitization,” Nature Commun. 1, 1 (2010).CrossRefGoogle Scholar
  4. 4.
    F. Liu, S. Song, D. Xue, et al., “Folded structured graphene paper for high performance electrode materials,” Adv. Mater. 24, 1089 (2012).CrossRefGoogle Scholar
  5. 5.
    G. He, H. Chen, J. Zhu, et al., “Synthesis and characterization of graphene paper with controllable properties via chemical reduction,” J. Mater. Chem. 21, 14631 (2011).Google Scholar
  6. 6.
    S. Park and J. W. Suk, J. An, J. Oh, S. Lee, W. Lee, J. R. Potts, J.-H. Byun, and R. S. Ruoff, “The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers,” Carbon 50, 4573 (2012).CrossRefGoogle Scholar
  7. 7.
    W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, and C. Fan, “Graphene-based antibacterial paper,” ACS Nano 4, 4817 (2010).CrossRefGoogle Scholar
  8. 8.
    A. R. Ranjbartoreh, B. Wang, X. Shen, and G. Wang, “Advanced mechanical properties of graphene paper,” J. Appl. Phys. 109, 014306 (2011).CrossRefGoogle Scholar
  9. 9.
    F. Xiao, Y. Li, X. Zan, K. Liao, R. Xu, and H. Duan, “Growth of metal-metal oxide nanostructures on free-standing graphene paper for flexible biosensors,” Adv. Funct. Mater. 22(12), 2487 (2012).CrossRefGoogle Scholar
  10. 10.
    Ch. Li, J. Adamcik, and R. Mezzenga, “Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties,” Nature Nanotech. 7, 421 (2012).CrossRefGoogle Scholar
  11. 11.
    S. H. Domingues, I. N. Kholmanov, T. Y. Kim, J. Y. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications,” Carbon 63, 454 (2013).CrossRefGoogle Scholar
  12. 12.
    J. Zhao, S. Pei, W. Ren, L. Gao, and H.-M. Cheng, “Efficient preparation of large-area graphene oxide sheets for transparent conductive films,” ACS Nano 4(9), 5245 (2010).CrossRefGoogle Scholar
  13. 13.
    S. Park, J. H. An, R. D. Piner, I. Jung, D. X. Yang, A. Velamakanni, S. T. Nguyen, and R. S. Ruoff, “Aqueous suspension and characterization of chemically modified graphene sheets,” Chem. Mater. 20(21), 6592 (2008).CrossRefGoogle Scholar
  14. 14.
    C. K. Chua and M. Pumera, “Chemical reduction of graphene oxide: a synthetic chemistry viewpoint,” Chem. Soc. Rev. 43, 291 (2014).CrossRefGoogle Scholar
  15. 15.
    S. Pei and H.-M. Cheng, “The reduction of graphene oxide,” Carbon 50, 3210 (2012).CrossRefGoogle Scholar
  16. 16.
    H.-X. Wang, Q. Wang, K.-G. Zhou, and H.-L. Zhang, “Graphene in light: design, synthesis and applications of photo-active graphene and graphene-like materials,” Small 9(8), 1266 (2013).CrossRefGoogle Scholar
  17. 17.
    M. Acik and Y. J. Chabal, “A review on thermal exfoliation of graphene oxide,” J. Mat. Sci. Res. 2(1), 101 (2013).Google Scholar
  18. 18.
    X. C. Dong, W. Huang, and P. Chen, “In situ synthesis of reduced graphene oxide and gold nanocomposites for nanoelectronics and biosensing,” Nanoscale Res. Lett. 6, 1 (2011).CrossRefGoogle Scholar
  19. 19.
    Z. Y. Yin, X. Huang, J. Zhang, S. X. Wu, P. Chen, G. Lu, P. Chen, Q. C. Zhang, Q. Y. Yan, and H. Zhang, “Real-time DNA detection using Pt nanoparticle decorated reduced graphene oxide field-effect transistors,” Nanoscale 4(1), 293 (2012).CrossRefGoogle Scholar
  20. 20.
    H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano 2(3), 463 (2008).CrossRefGoogle Scholar
  21. 21.
    R. Wang, Y. Wang, C. Xu, J. Sun, and L. Gao, “Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: reduction effect and mechanisms,” RSC Adv. 3, 1194 (2013).CrossRefGoogle Scholar
  22. 22.
    S. X. Wu, Z. Y. Yin, Q. Y. He, X. Huang, X. Z. Zhou, and H. Zhang, “Electrochemical deposition of semi-conductor oxides on reduced graphene oxide-based flexible, transparent and conductive electrodes,” J. Phys. Chem. C 114(27), 11816 (2010).CrossRefGoogle Scholar
  23. 23.
    Z. Wang, S. Wu, J. Zhang, P. Chen, G. Yang, X. Zhou, Q. Zhang, Q. Yan, and H. Zhang, “Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction,” Nanoscale Res. Lett. 7, 161 (2012).CrossRefGoogle Scholar
  24. 24.
    Q. He, S. Wu, S. Gao, X. Cao, Z. Yin, H. Li, P. Chen, and H. Zhang, “Transparent, flexible, all-reduced graphene oxide thin film transistors,” ACS Nano 5(6), 5038 (2011).CrossRefGoogle Scholar
  25. 25.
    J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, and P. E. Sheehan, “Reduced graphene oxide molecular sensors,” Nano Lett. 8(10), 3137 (2008).CrossRefGoogle Scholar
  26. 26.
    B. Li, X. Cao, H. G. Ong, J. W. Cheah, X. Zhou, Z. Yin, H. Li, J. Wang, F. Boey, W. Huang, and H. Zhang, “All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes,” Adv. Mater. 22(28), 3058 (2010).CrossRefGoogle Scholar
  27. 27.
    R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335, 442 (2012).CrossRefGoogle Scholar
  28. 28.
    H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, and H. B. Park, “Selective gas transport through few-layered graphene and graphene oxide membranes,” Science 342, 91 (2013).CrossRefGoogle Scholar
  29. 29.
    A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419 (2013).CrossRefGoogle Scholar
  30. 30.
    L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, et al., “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • G. N. Alexandrov
    • 1
  • S. A. Smagulova
    • 1
    Email author
  • A. N. Kapitonov
    • 1
  • F. D. Vasil’eva
    • 1
  • I. I. Kurkina
    • 1
  • P. V. Vinokurov
    • 1
  • V. B. Timofeev
    • 1
  • I. V. Antonova
    • 2
  1. 1.Ammosov North-Eastern Federal UniversityYakutskRussia
  2. 2.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations