Skip to main content
Log in

On the surface pressure of nanocrystal

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A model of nanocrystal in the form of a rectangular parallelepiped with variable surface shape (RP model) is used to study the dependences of surface pressure P sf , elasticity modulus B T , and of the size compression depending on the size and shape of simple substance with free surface. It is shown that the surface pressure of nanocrystal is always lower than the pressure determined by the Laplace equation: P sf < P ls . Moreover, the surface pressure changes the sign and stretches the nanocrystal at high temperature. An expression for the temperature corresponding to the zero surface pressure was obtained, i.e., the temperature at which the equality P sf = 0 is satisfied. It is shown that elasticity modulus B T decreases with a decrease in the size of the nanocrystal due to the increase in the Laplace pressure P ls . The more the shape of nanocrystal differs from the most energetically stable shape (cube for the RP model), the more noticeable the dependencies of the functions P ls , P sf , and B T are on the size upon the decreasing size of the nanocrystal along the isotherm. Particular calculations are carried out for diamond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Nagaev, “Small metallic particles,” Usp. Fiz. Nauk 162(9), 49–124 (1992).

    Article  Google Scholar 

  2. V. I. Gorchakov, E. L. Nagaev, and S. P. Chizhik, “Does Laplace pressure compress physical bodies?,” Fiz. Tverd. Tela 30(4), 1068 (1988).

    Google Scholar 

  3. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  4. M. N. Magomedov, “The surface pressure in a faceted nanocrystal,” Tech. Phys. Lett. 31(1), 13 (2005).

    Article  Google Scholar 

  5. M. N. Magomedov, Research of Interatomic Interaction, Vacancy Formation and Self-Diffusion in Crystals (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  6. M. N. Magomedov, “New “surface” criterion of melting,” Tech. Phys. 58(6), 927 (2013).

    Article  Google Scholar 

  7. M. N. Magomedov, “The variation of “surface” pressure in a nanocrystal as a function of temperature,” High Temp. 43(6), 870–880 (2005).

    Article  Google Scholar 

  8. M. N. Magomedov, “Dependence of the surface energy on the size and shape of a nanocrystal,” Phys. Solid State 46(5), 954–968 (2004).

    Article  Google Scholar 

  9. L. A. Girifalco, Statistical Physics of Materials (J. Wiley and Sons, New York, 1973).

    Google Scholar 

  10. M. N. Magomedov, “On the determination of the debye temperature from experimental data,” Phys. Solid State 45(1), 32–35 (2003).

    Article  Google Scholar 

  11. M. N. Magomedov, “On the change in the modulus of elasticity with a decrease in the size of a nanocrystal,” Tech. Phys. Letters 39(5), 409–412 (2013).

    Article  Google Scholar 

  12. M. N. Magomedov, “On the surface properties of a nanodiamond,” Phys. Solid State 52(6), 1283–1292 (2010).

    Article  Google Scholar 

  13. Yu. F. Komnik, Physics of Metallic Films. Dimensional and Structure Effects (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  14. M. N. Magomedov, “On the nature of the covalent bond in crystals of carbon family Elements,” Russ. J. Inorg. Chem. 49(12), 1906 (2004).

    Google Scholar 

  15. M. N. Magomedov, “The variation of thermoelastic properties under conditions of variation of isotopic composition of diamond,” High Temperature 47(3), 343–350 (2009).

    Article  Google Scholar 

  16. A. F. Goncharov, “Diamond stability under high pressure,” Usp. Fiz. Nauk 152(2), 317–322 (1987).

    Article  Google Scholar 

  17. S. M. Stishov, “Energy, compressibility, and covalence in the carbon family,” JETP Lett. 71(1), 15 (2000).

    Article  Google Scholar 

  18. Diamond Physical Properties. Handbook, Ed. by N. V. Novikov (Naukova dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  19. L. A. Shul’man, “Melting temperature for diamond and BNsf and Lindeman criteria,” Sverkhtverd. Mater., No. 4, 58 (1993).

    Google Scholar 

  20. W. J. Price, S. A. Leigh, S. M. Hsu, T. E. Patten, and Liu Gang-Yu, “Measuring the size dependence of young’s modulus using force modulation atomic force microscopy,” J. Phys. Chem. A 110(4), 1382–1388 (2006).

    Article  Google Scholar 

  21. H. Kim and W. Windl, “Efficient ab-initio calculation of the elastic properties of nanocrystalline silicon,” J. Comput. Theoret. Nanosci. 4(1), 65–70 (2007).

    Google Scholar 

  22. S. Veprek, Z. Igbal, H. R. Oswald, F. A. Sarott, J. J. Wagner, and A. P. Webb, “Lattice dilatation of small silicon crystallites,” Solid State Commun. 39(3), 508–512 (1981).

    Google Scholar 

  23. M. Ya. Gamarnik, “Size changes of lattice parameters in ultradisperse diamond and silicon,” Phys. Status Solidi B 161(2), 457–462 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Magomedov.

Additional information

Original Russian Text © M.N. Magomedov, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magomedov, M.N. On the surface pressure of nanocrystal. Nanotechnol Russia 9, 293–304 (2014). https://doi.org/10.1134/S1995078014030100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078014030100

Keywords

Navigation