Skip to main content
Log in

Effect of chronic inhalation of silicon dioxide nanoparticles (Tarkosil 25) on the expression of key genes of the serotonergic system in the mouse brain

Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The effect of silicon dioxide nanoparticles on the expression of key genes of the brain serotonergic (5-HT) system has been studied in specific pathogen-free mice chronically exposed to Tarkosil nanoaerosol (25-nm particles). Males of the Balb/c and C57Bl/6 strains are used to reveal genetic differences in the response to the nanomaterial. The animals are exposed to aerosol with a mean particle size of 107 nm for 10 days. After exposure, their midbrains, hippocampi, and frontal cortices are examined. The expression rates of genes for 5-HT1A and 5-HT2A receptors; tryptophan hydroxylase (TPH2), the key enzyme in 5-HT production; serotonin transporter (5-HTT); and interleukin 6 (IL6) as a marker of inflammation in the brain are assayed by quantitative reverse transcription PCR. The expression of 5-HT1A is notably elevated in the hippocampus of Balb/c mice, but it tends to decrease in C57Bl/6. No changes in the expression of the genes for 5-HT2A, TPH2, 5-HTT, or IL6 are noted in any brain divisions. Thus, the chronic inhalation of silicon dioxide nanoparticles does not activate nonspecific immunity in the brain, but it exerts contrasting genotype-specific effects on the expression of the 5-HT1A receptor in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G. Oberdörster, Z. Sharp, V. Atudorei, A. Elder, R. Gelein, W. Kreyling, and C. Cox, “Translocation of inhaled ultrafine particles to the brain,” Inhalation. Toxicol. 16(6–7), 437–445 (2004).

    Article  Google Scholar 

  2. A. Elder, R. Gelein, V. Silva, T. Feikert, L. Opanashuk, J. Carter, R. Potter, A. Maynard, Y. Ito, J. Finkelstein, and G. Oberdorster, “Translocation of inhaled ultrafine manganese oxide particles to the central nervous system,” Environ. Health. Perspect. 114, 1172–1178 (2006).

    Article  Google Scholar 

  3. R. G. Lucchini, D. C. Dorman, A. Elder, and B. Veronesi, “Neurological impacts from inhalation of pollutants and the nose-brain connection,” Neurotoxicology 33(4), 838–841 (2012).

    Article  Google Scholar 

  4. H. S. Sharma and A. Sharma, “Nanowired drug delivery for neuroprotection in central nervous system injuries: modulation by environmental temperature, intoxication of nanoparticles, and comorbidity factors,” WIREs Nanomed. Nanobiotechnol. 4, 184–203 (2012).

    Article  Google Scholar 

  5. Y. Song and S. Tang, “Nanoexposure, unusual diseases, and new health and safety concerns,” Sci. World J. 11, 1821–1828 (2011).

    Article  Google Scholar 

  6. H. S. Sharma and A. Sharma, “Breakdown of the blood-brain barrier in stress alters cognitive dysfunction and induces brain pathology. New perspective for neuroprotective strategies,” in Brain Protection in Schizophrenia, Mood and Cognitive Disorders, Ed. by M. Ritsner (Springer-Verlag, Berlin, New-York, 2010), pp. 243–304.

    Chapter  Google Scholar 

  7. H. S. Sharma, “Nanoneuroscience: emerging concepts on nanoneurotoxicity and nanoneuroprotection,” Nanomedicine (London) 2(6), 753–758 (2007).

    Article  Google Scholar 

  8. H. S. Sharma, R. Patnaik, A. Sharma, P. O. Sjoquist, and J. V. Lafuente, “Silicon dioxide nanoparticles (SiO2, 40–50 nm) exacerbate pathophysiology of traumatic spinal cord injury and deteriorate functional outcome in the rat. An experimental study using pharmacological and morphological approaches,” J. Nanosci. Nanotechnol. 9(8), 4970–4980 (2009).

    Article  Google Scholar 

  9. J. V. Lafuente, A. Sharma, R. Patnaik, D. F. Muresanu, and H. S. Sharma, “Diabetes exacerbates nanoparticles induced brain pathology,” CNS Neurol. Disord. Drug. Targets 11(1), 26–39 (2012).

    Article  Google Scholar 

  10. M. Chen and A. von Mikecz, “Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles,” Exp. Cell Res. 305(1), 51–62 (2005).

    Article  Google Scholar 

  11. M. A. Malvindi, V. Brunetti, G. Vecchio, A. Galeone, R. Cingolani, and P. P. Pompa, “SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing,” Nanoscale 4(2), 486–495 (2012).

    Article  Google Scholar 

  12. J. Pekkanen, K. L. Timonen, J. Ruuskanen, A. Reponen, and A. Mirme, “Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms,” Environ. Res. 74, 24–33 (1997).

    Article  Google Scholar 

  13. G. Oberdörster, V. Stone, and K. Donaldson, “Toxicology of nanoparticles: a historical perspective,” Nanotoxicology 1(1), 2–25 (2007).

    Article  Google Scholar 

  14. B. L. Jacobs and C. A. Fornal, “Serotonin and behavior. A general hypothesis,” in Psychopharmacology: The Fourth Generation of Progress, Ed. by F. E. Bloom and D. J. Kupfer (Raven Press, New York, 1995), pp. 461–469.

    Google Scholar 

  15. I. Lucki, “The spectrum of behaviors influenced by serotonin,” Biol. Psychiatry 44(3), 151–162 (1998).

    Article  Google Scholar 

  16. T. G. Amstislavskaya and N. K. Popova, “The roles of different types of serotonin receptors in activation of the hypophyseal-testicular complex induced in mice by the presence of a female,” Neurosci. Behav. Physiol. 34(8), 833–837 (2004).

    Article  Google Scholar 

  17. M. A. Tikhonova, T. G. Amstislavskaya, and A. V. Kulikov, “Chronic administration of imipramine normalizes decreased sexual motivation and increased predisposition to catalepsy induced by propylthiouracil in rats,” Neurosci. Behav. Physiol. 39(4), 409–415 (2009).

    Article  Google Scholar 

  18. N. K. Popova and V. S. Naumenko, “5-HT1A receptor as a key player in the brain 5-HT system,” Rev. Neurosci. 24(2), 191–204 (2013).

    Google Scholar 

  19. B. L. Jacobs and E. C. Azmitia, “Structure and function of the brain serotonin system,” Physiol. Rev. 72, 165–229 (1992).

    Google Scholar 

  20. A. Meneses and G. Liy-Salmeron, “Serotonin and emotion, learning and memory,” Rev. Neurosci. 23(5–6), 543–553 (2012).

    Google Scholar 

  21. P. Chomczynski and N. Sacchi, “Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction,” Anal. Biochem. 162, 156–159 (1987).

    Article  Google Scholar 

  22. P. Blier and C. de Montigny, “Current advances and trends in the treatment of depression,” Trends Pharmacol. Sci. 15(7), 220–226 (1994).

    Article  Google Scholar 

  23. S. K. Sohaebuddin, P. T. Thevenot, D. Baker, J. W. Eaton, and L. Tang, “Nanomaterial cytotoxicity is composition, size, and cell type dependent,” Part. Fibre Toxicol. 7, 22 (2010).

    Article  Google Scholar 

  24. D. Napierska, L. C. Thomassen, D. Lison, J. A. Martens, and P. H. Hoet, “The nanosilica hazard: another variable entity,” Part. Fibre. Toxicol. 7(1), 39 (2010).

    Article  Google Scholar 

  25. D. Napierska, L. C. Thomassen, V. Rabolli, D. Lison, L. Gonzalez, M. Kirsch-Volders, J. A. Martens, and P. H. Hoet, “Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells,” Small 5(7), 846–853 (2009).

    Article  Google Scholar 

  26. S. P. Hudson, R. F. Padera, R. Langer, and D. S. Kohane, “The biocompatibility of mesoporous silicates,” Biomaterials 29(30), 4045–4055 (2008).

    Article  Google Scholar 

  27. Y. Dwivedi, A. C. Mondal, G. V. Payappagoudar, and H. S. Rizavi, “Differential regulation of serotonin (5HT)2A receptor mRNA and protein levels after single and repeated stress in rat brain: role in learned helplessness behavior,” Neuropharmacology 48(2), 204–214 (2005).

    Article  Google Scholar 

  28. S. Maswood, J. E. Barter, L. R. Watkins, and S. F. Maier, “Exposure to inescapable but not escapable shock increases extracellular levels of 5HT in the dorsal raphe nucleus of the rat,” Brain. Res. 783, 115–120 (1998).

    Article  Google Scholar 

  29. S. Wissink, O. Meijer, D. Pearce, B. van Der Burg, and P. T. van Der Saag, “Regulation of the rat serotonin-1A receptor gene by corticosteroids,” J. Biol. Chem. 275(2), 1321–1326 (2000).

    Article  Google Scholar 

  30. S. E. Pel’tek, M. P. Moshkin, L. A. Gerlinskaya, T. N. Goryachkovskaya, S. V. Bannikova, O. A. Podkolodnaya, V. M. Popik, and N. A. Kolchanov, “SPF-vivarium is a scientific-technical complex for researches in the area of nanosafety,” Nanotekhnol. Ekol. Proizv. 2(15) (2012).

    Google Scholar 

  31. M. P. Moshkin, S. E. Pel’tek, L. A. Gerlinskaya, T. N. Goryachkovskaya, G. V. Kontsevaya, S. O. Maslennikova, V. V. Popik, N. A. Kolchanov, et al., “Acute immune response to the intranasal application of nanoparticles of SiO2 (tarkosil 25) in mice of two strains,” Nanotech. Russ. 6(11–12), 763 (2011).

    Article  Google Scholar 

  32. A. V. Kulikov, V. S. Naumenko, A. S. Tsybko, N. A. Sinyakova, D. V. Bazovkina, and N. K. Popova, “Role of glycoprotein gp130 in serotonin mediator system of mice brain,” Izv. Akad. Nauk SSSR Ser. Biol. 44(5), 904–910 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Tsybko.

Additional information

Original Russian Text © A.S. Tsybko, T.G. Amstislavskaya, G.V. Kontsevaya, L.A. Gerlinskaya, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsybko, A.S., Amstislavskaya, T.G., Kontsevaya, G.V. et al. Effect of chronic inhalation of silicon dioxide nanoparticles (Tarkosil 25) on the expression of key genes of the serotonergic system in the mouse brain. Nanotechnol Russia 9, 213–218 (2014). https://doi.org/10.1134/S1995078014020177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078014020177

Keywords

Navigation