Skip to main content
Log in

Photocatalytic properties of titania nanoparticles obtained by laser ablation

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The photocatalytic properties of titania (titanium dioxide) nanoparticles ablated by pulsed laser radiation are studied in this work. The influence of the subsequent annealing in a furnace at various temperatures on the properties of particles is studied. It is shown that the photocatalytic activity of particles decreases as the temperature of annealing rises. The degradation of the properties is associated with the growth in size of TiO2 nanoparticles and the decrease in surface defects in the process of thermal annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nakataa and A. Fujishima, “TiO2 photokatalysis: design and applications,” J. Photochem. Photobiol. C: Photochem. Rev. 13, 169–189 (2012).

    Article  Google Scholar 

  2. S. Gupta and M. Tripathi, “A review of TiO2 nanoparticles,” Chinese Sci. Bull. 56(16), 1639–1657 (2011).

    Article  CAS  Google Scholar 

  3. Y. Lv, L. Yu, H. Huang, H. Liu, and Y. Feng, “Preparation of F-doped Titania nanoparticles with a highly thermally stable anatase phase by alcoholysis of TiCl4,” Appl. Surf. Sci. 255, 9548–9552 (2009).

    Article  CAS  Google Scholar 

  4. K. Elghnijia, J. Sorob, S. Rossignolb, and M. Ksibia, “A simple route for the preparation of P-modified TiO2: Effect of phosphorus on thermal stability and photocatalytic activity,” J. Taiwan Inst. Chem. Eng. 43, 132–139 (2012).

    Article  Google Scholar 

  5. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev. 107, 2891–2959 (2007).

    Article  CAS  Google Scholar 

  6. J. S. Golightly, “Formation and characterization of nanoparticles via laser ablation in solution,” PhD Dissertation (The Pennsylvania State University, 2007).

    Google Scholar 

  7. P. Liu, W. Cai, M. Fang, Z. Li, H. Zeng, J. Hu, X. Luo, and W. Jing, “Room temperature synthesized rutile TiO2 nanoparticles induced by laser ablation in liquid and their photocatalytic activity,” Nanotechnol. 20, 285707–285712 (2009).

    Article  Google Scholar 

  8. M. A. Pugachevskii, V. G. Zavodinskii, and A. P. Kuz’menko, “Dispersion of zirconium dioxide by pulsed laser radiation,” Tech. Phys. 56(2), 254 (2011).

    Article  CAS  Google Scholar 

  9. M. A. Pugachevskii, Morphology and phase changes in laser-ablated TiO2 particles during thermal annealing, Tech. Phys. Lett. 38(7), 328 (2012).

    Article  CAS  Google Scholar 

  10. N. Serpone and A. Salinaro, “Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I: suggested protocol,” Pure Appl. Chem. 71, 303–320 (1999).

    Article  CAS  Google Scholar 

  11. K. Eufinger, “Effect of deposition conditions and doping on the structure, optical properties and photocatalytic activity of d.c. magnetron sputtered TiO2 thin films,” A Thesis in Chemistry (The Ghent Univ., 2007).

    Google Scholar 

  12. T. M. Breault and B. M. Bartlett, “Lowering the band gap of anatase-structured TiO2 by coalloying with Nb and N: electronic structure and photocatalytic degradation of methylene blue dye,” J. Phys. Chem. C 116, 5986–5994 (2012).

    Article  CAS  Google Scholar 

  13. U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep. 48, 53–229 (2003).

    Article  CAS  Google Scholar 

  14. V. A. Kozlov and V. V. Kozlovskii, “Doping of semiconductors using radiation defects produced by irradiation protons and alpha-particles,” Semiconductors 35(7), 735 (2001).

    Article  CAS  Google Scholar 

  15. S. Na-Phattalung, M. F. Smith, K. Kim, et al., Phys. Rev. B 73, 125205–125217 (2006).

    Article  Google Scholar 

  16. J. He, “First principles calculations of intrinsic defects and extrinsic impurities in titanium dioxide,” PhD Dissertation (Univ. Florida, 2006).

    Google Scholar 

  17. Y. Namai and O. Matsuoka, “Chain structures of surface hydroxyl groups formed via line oxygen vacancies on TiO2(110) surfaces studied using noncontact atomic force microscopy,” J. Phys. Chem. B 109, 23948–23954 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pugachevskii.

Additional information

Original Russian Text © M.A. Pugachevskii, 2013, published in Rossiiskie Nanotekhnologii, 2013, Vol. 8, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pugachevskii, M.A. Photocatalytic properties of titania nanoparticles obtained by laser ablation. Nanotechnol Russia 8, 432–436 (2013). https://doi.org/10.1134/S1995078013040125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078013040125

Keywords

Navigation