Nanotechnologies in Russia

, Volume 8, Issue 7–8, pp 445–451 | Cite as

Electronic structure and adsorption property of doped metal clusters

  • N. N. Kolchenko
  • N. A. Chernyshev


Density functional theory calculations have been conducted to explore the electronic structure of bimetallic nanoclusters X12Y (X = Pt, Cu; Y = Ag, Al, Au, Bi, Cu, Ni, Pt, Ti). The results demonstrate that the properties of metal clusters can be tuned by dopant atoms.


Adsorption Energy Impurity Atom Band Center Core Shell Pt13 Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. R. Cuenya, “Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects,” Thin Solid Films 518, 3127–3150 (2010)CrossRefGoogle Scholar
  2. 2.
    V. I. Bukhtiyarov and M. G. Slin’ko, “Metallic nano- systems in catalysis,” Usp. Khim. 70(2), 167 (2001).CrossRefGoogle Scholar
  3. 3.
    R. Ferrando, K. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chem. Rev. 108(3), 846 (2008).CrossRefGoogle Scholar
  4. 4.
    T. Ozaki, “Variationally optimized atomic orbitals for large-scale electronic structures,” Phys. Rev. B 67,155108 (2003).CrossRefGoogle Scholar
  5. 5.
    T. Ozaki and H. Kino, “Numerical atomic basis orbitals from H to Kr,” Phys. Rev. 69, 195113 (2004).CrossRefGoogle Scholar
  6. 6.
    I. Morrison, D. M. Bylander, and L. Kleinman, “Non-local Hermitian norm-conserving Vanderbild pseudo-potential,” Phys. Rev. B 47, 6728 (1993).CrossRefGoogle Scholar
  7. 7.
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  8. 8.
    R. A. Olsen, P. H. T. Philipsen, and E. J. Baerends, “CO on Pt(111): a puzzle revisited,” J. Chem. Phys. 119(8), 4522 (2003).CrossRefGoogle Scholar
  9. 9.
    B. Hammer, O. H. Nielsen and J. K. Norskov, “Structure sensitivity in adsorption: CO interaction with stepped and reconstructed Pt surfaces,” Catal. Lett. 46, 31–35 (1997).CrossRefGoogle Scholar
  10. 10.
    L.-L. Wang and D. D. Johnson, “Electrocatalytic properties of PtBi and PtPb intermetallic line compounds via DFT: CO and H adsorption,” J. Phys. Chem. 112, 8266 (2008).Google Scholar
  11. 11.
    M. Mavrikakis, B. Hammer, and J. K. Norskov, “Effect of strain on the reactivity of metal surfaces,” Phys. Rev. Lett. 81(13), 2819 (1998).CrossRefGoogle Scholar
  12. 12.
    B. H. Morrow, D. E. Resasco, A. Striolo, and M. B. Nardelli, “CO adsorption on noble metal clusters: local environment effects,” J. Phys. Chem. C 115, 5637 (2011).CrossRefGoogle Scholar
  13. 13.
    E. Knoesel, A. Hotzel, and M. Wolf, “Ultrafast dynamics of hot electrons and holes in copper: excitation, energy relaxation, and transport effects,” Phys. Rev. B 57, 12812 (1998).CrossRefGoogle Scholar
  14. 14.
    W. Tang and G. Henkelman, “Charge redistribution in core-shell nanoparticles to promote oxygen reduction,” J. Chem. Phys. 130, 194504 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Semenov Institute for Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of Molecular and Biological PhysicsMoscow Institute of Physics and Technology (State University)MoscowRussia

Personalised recommendations