Skip to main content

Formation and properties of ultrathin layers for fabrication of SOI MOS nanotransistor elements

Abstract

The methods of manufacturing and properties of elements of the SOI MOS nanotransistor such as the gate/gate dielectric, source/drain regions and ohmic contacts have been considered. The HfO2(50 nm)/Si (100) and W/HfO2(4 nm)/Si (100) gate structures have been fabricated using the radio-frequency magnetron sputtering method. It is shown that the crystalline structure of the HfO2 films and their electrical characteristics (breakdown voltage) are interrelated. To produce ultrashallow source/drain regions, a high-dose plasma-immersion boron ion implantation is used. In the process of the rapid thermal annealing of the implanted layers, a substantial reduction in the boron amount near the surface of the SOI structure is detected. The CoSi2 ohmic contacts were made using the Ti(8 nm)/Co(10 nm)/Ti(5 nm) structures formed on a Si substrate of (100) orientation. It is established that the CoSi2 film formed as a result of two-stage annealing possesses a surface resistance of ∼20 Ohm/□.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. K. Celler and S. Cristoloveanu, J. Appl. Phys. 93(9), 4955–4973 (2003).

    Article  CAS  Google Scholar 

  2. 2.

    O. V. Naumova, I. V. Antonova, V. P. Popov, Yu. V. Nastaushev, T. A. Gavrilova, L. V. Litvin, and A. L. Aseev, Semiconductors 37(10), 1222–1228 (2003).

    Article  CAS  Google Scholar 

  3. 3.

    A. A. Orlikovsky, V. F. Lukichev, K. V. Rudenko, and A. S. Rudyi, Integral 54(4), 10–17 (2010) [in Russian].

    Google Scholar 

  4. 4.

    T. Inoue, K. Suzuki, and H. Miura, in Proc. Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD) (San Diego, 2009), pp. 198–202.

    Google Scholar 

  5. 5.

    V. I. Rudakov, E. A. Bogoyavlenskaya, and Yu. I. Denisenko, Technical Physics Letters 38(11), 982–984 (2012).

    Article  CAS  Google Scholar 

  6. 6.

    K. Rudenko, S. Averkin, V. Lukichev, A. Orlikovsky, A. Pustovit, and A. Vyatkin, Proc. SPIE 6260, 03-1–03-9 (2005).

    Google Scholar 

  7. 7.

    I. G. Aramanovich and V. I. Levin, Equations of Mathematical Physics (Nauka, Moscow, 1969, 287 p.) [in Russian].

    Google Scholar 

  8. 8.

    V. I. Rudakov and V. N. Gusev, Russian Microelectronics 37(4), 215–225 (2008).

    Article  CAS  Google Scholar 

  9. 9.

    V. I. Rudakov, Yu. I. Denisenko, V. V. Naumov, and S. G. Simakin, Technical Physics Letters 37(2), 112–115 (2001).

    Article  Google Scholar 

  10. 10.

    V. I. Rudakov, Yu. I. Denisenko, V. V. Naumov, and S. G. Simakin, Technical Physics 57(2), 279–285 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. I. Rudakov.

Additional information

Original Russian Text © V.I. Rudakov, E.A. Bogoyavlenskaya, Yu.I. Denisenko, V.V. Ovcharov, A.L. Kurenya, K.V. Rudenko, V.F. Lukichev, A.A. Orlikovsky, N.I. Plis, 2013, published in Rossiiskie Nanotekhnologii, 2013, Vol. 8, Nos. 3–4.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rudakov, V.I., Bogoyavlenskaya, E.A., Denisenko, Y.I. et al. Formation and properties of ultrathin layers for fabrication of SOI MOS nanotransistor elements. Nanotechnol Russia 8, 255–261 (2013). https://doi.org/10.1134/S1995078013020122

Download citation

Keywords

  • Rapid Thermal Annealing
  • Ultrathin Layer
  • Transient Layer
  • Auger Electron Spectroscopy Analysis
  • Rapid Thermal Annealing Process