Advertisement

Nanotechnologies in Russia

, Volume 8, Issue 3–4, pp 255–261 | Cite as

Formation and properties of ultrathin layers for fabrication of SOI MOS nanotransistor elements

  • V. I. RudakovEmail author
  • E. A. Bogoyavlenskaya
  • Yu. I. Denisenko
  • V. V. Ovcharov
  • A. L. Kurenya
  • K. V. Rudenko
  • V. F. Lukichev
  • A. A. Orlikovsky
  • N. I. Plis
Article

Abstract

The methods of manufacturing and properties of elements of the SOI MOS nanotransistor such as the gate/gate dielectric, source/drain regions and ohmic contacts have been considered. The HfO2(50 nm)/Si (100) and W/HfO2(4 nm)/Si (100) gate structures have been fabricated using the radio-frequency magnetron sputtering method. It is shown that the crystalline structure of the HfO2 films and their electrical characteristics (breakdown voltage) are interrelated. To produce ultrashallow source/drain regions, a high-dose plasma-immersion boron ion implantation is used. In the process of the rapid thermal annealing of the implanted layers, a substantial reduction in the boron amount near the surface of the SOI structure is detected. The CoSi2 ohmic contacts were made using the Ti(8 nm)/Co(10 nm)/Ti(5 nm) structures formed on a Si substrate of (100) orientation. It is established that the CoSi2 film formed as a result of two-stage annealing possesses a surface resistance of ∼20 Ohm/□.

Keywords

Rapid Thermal Annealing Ultrathin Layer Transient Layer Auger Electron Spectroscopy Analysis Rapid Thermal Annealing Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. K. Celler and S. Cristoloveanu, J. Appl. Phys. 93(9), 4955–4973 (2003).CrossRefGoogle Scholar
  2. 2.
    O. V. Naumova, I. V. Antonova, V. P. Popov, Yu. V. Nastaushev, T. A. Gavrilova, L. V. Litvin, and A. L. Aseev, Semiconductors 37(10), 1222–1228 (2003).CrossRefGoogle Scholar
  3. 3.
    A. A. Orlikovsky, V. F. Lukichev, K. V. Rudenko, and A. S. Rudyi, Integral 54(4), 10–17 (2010) [in Russian].Google Scholar
  4. 4.
    T. Inoue, K. Suzuki, and H. Miura, in Proc. Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD) (San Diego, 2009), pp. 198–202.Google Scholar
  5. 5.
    V. I. Rudakov, E. A. Bogoyavlenskaya, and Yu. I. Denisenko, Technical Physics Letters 38(11), 982–984 (2012).CrossRefGoogle Scholar
  6. 6.
    K. Rudenko, S. Averkin, V. Lukichev, A. Orlikovsky, A. Pustovit, and A. Vyatkin, Proc. SPIE 6260, 03-1–03-9 (2005).Google Scholar
  7. 7.
    I. G. Aramanovich and V. I. Levin, Equations of Mathematical Physics (Nauka, Moscow, 1969, 287 p.) [in Russian].Google Scholar
  8. 8.
    V. I. Rudakov and V. N. Gusev, Russian Microelectronics 37(4), 215–225 (2008).CrossRefGoogle Scholar
  9. 9.
    V. I. Rudakov, Yu. I. Denisenko, V. V. Naumov, and S. G. Simakin, Technical Physics Letters 37(2), 112–115 (2001).CrossRefGoogle Scholar
  10. 10.
    V. I. Rudakov, Yu. I. Denisenko, V. V. Naumov, and S. G. Simakin, Technical Physics 57(2), 279–285 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. I. Rudakov
    • 1
    Email author
  • E. A. Bogoyavlenskaya
    • 1
  • Yu. I. Denisenko
    • 1
  • V. V. Ovcharov
    • 1
  • A. L. Kurenya
    • 1
  • K. V. Rudenko
    • 2
  • V. F. Lukichev
    • 2
  • A. A. Orlikovsky
    • 2
  • N. I. Plis
    • 3
  1. 1.Institute of Physics and Technology, Yaroslavl BranchRussian Academy of SciencesYaroslavlRussia
  2. 2.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  3. 3.Joint Stock Company “Angstrem”MoscowRussia

Personalised recommendations