Nanotechnologies in Russia

, Volume 8, Issue 1–2, pp 1–22 | Cite as

Photochemical reduction of graphite oxide



The spectral and photochemical properties of graphite oxide (GO) in films have been examined. The photochemical reduction of GO has been studied using optical absorption, IR and Raman spectroscopy, and mass spectroscopy. The molecular model of photoprocesses has been considered, and a domain model of photoreduction has been suggested.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene Based Materials: Past, Present and Future,” Progr. Mater. Sci. 56(7), 1178–1271 (2011).CrossRefGoogle Scholar
  2. 2.
    S. V. Morozov, K. S. Novoselov, and A. K. Geim, “Electron Transport in Graphene,” Usp. Fiz. Nauk 178(7), 776–780 (2008).CrossRefGoogle Scholar
  3. 3.
    O. C. Compton and S. B. T. Nguyen, “Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials,” Small 6(6), 711–723 (2010).CrossRefGoogle Scholar
  4. 4.
    X. Wang, L. Zhi, and K. Mullen, “Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells,” Nano Lett. 8(1), 323–327 (2008).CrossRefGoogle Scholar
  5. 5.
    S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R.S. Ruoff, “Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide,” Carbon 45(7), 1558–1565 (2007).CrossRefGoogle Scholar
  6. 6.
    T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized Graphene Sheets for Polymer Nanocomposites,” Nature Nanotechnol. 3(6), 327–331 (2008).CrossRefGoogle Scholar
  7. 7.
    D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S.-B. T. Nguyen, and R. S. Ruoff, “Preparation and Characterization of Graphene Oxide Paper,” Nature 448(7152), 457–460 (2007).CrossRefGoogle Scholar
  8. 8.
    X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. de Heer, “Epitaxial-Graphene/Graphene-Oxide Junction: An Essential Step towards Epitaxial Graphene Electronics,” Phys. Rev. Lett. 101(2), 026801(4) (2008).Google Scholar
  9. 9.
    G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, and M. Chhowalla, “Blue Photoluminescence from Chemically Derived Graphene Oxide,” Adv. Mater. 22(4), 505–509 (2010).CrossRefGoogle Scholar
  10. 10.
    L. W. K. Lee, Y.-Y. Sun, M. Lucking, Z. Chen, J. J. Zhao, and S. B. Zhang, “Graphene Oxide as an Ideal Substrate for Hydrogen Storage,” ACS Nano 3(10), 2995–3000 (2009).CrossRefGoogle Scholar
  11. 11.
    B. S. Paratala, B. D. Jacobson, S. Kanakia, L. D. Francis, and B. Sitharaman, “Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons,” PLoS ONE 7(6) (2012).Google Scholar
  12. 12.
    G. Williams, B. Seger, and P. V. Kamat, TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide,” ACS Nano 2(7), 1487–1491 (2008).CrossRefGoogle Scholar
  13. 13.
    G. Williams and P. V. Kamat, “Graphene-Semiconductor Nanocomposites: Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide,” Langmuir 25(24), 13869–13873 (2009).CrossRefGoogle Scholar
  14. 14.
    H. Li, S. Pang, and X. Feng, K. Müllen, and C. Bubeck, “Polyoxometalate Assisted Photoreduction of Graphene Oxide and Its Nanocomposite Formation,” Chem. Commun. 46(34), 6243–6245 (2010).CrossRefGoogle Scholar
  15. 15.
    L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).CrossRefGoogle Scholar
  16. 16.
    V. Abdelsayed, S. Moussa, H. M. Hassan, H. S. Aluri, M. M. Collinson, and M. S. El-Shall, “Photothermal Deoxygenation of Graphite Oxide with Laser Excitation in Solution and Graphene-Aided Increase in Water Temperature,” J. Phys. Chem. Lett. 1(19), 2804–2809 (2010).CrossRefGoogle Scholar
  17. 17.
    L. Huang, Y. Liu, L.-C. Ji, Y.-Q. Xie, T. Wang, and W.-Z. Shi, “Pulsed Laser Assisted Reduction of Graphene Oxide,” Carbon 49(7), 2431–2436 (2011).CrossRefGoogle Scholar
  18. 18.
    V. A. Smirnov, A. A. Arbuzov, Yu. M. Shul’ga, S. A. Baskakov, V. M. Martynenko, V. E. Muradyan, and E. I. Kresova, “Photoreduction of Graphite Oxide,” High Energy Chem. 45, 57–61 (2011).CrossRefGoogle Scholar
  19. 19.
    Y. M. Shulga, V. M. Martynenko, V. E. Muradyan, S. A. Baskakov, V. A. Smirnov, and G. L. Gutsev, “Gaseous Products of Thermo- and Photo-Reduction of Graphite Oxide,” Chem. Phys. Lett. 498(4–6), 287–291 (2010).CrossRefGoogle Scholar
  20. 20.
    V. A. Smirnov, Yu. M. Shul’ga, N. N. Denisov, E. I. Kresova, and N. Yu. Shul’ga, “Photoreduction of Graphite Oxide at Different Temperatures”, Nanotechnol. Russ. 7, 156–163 (2012).CrossRefGoogle Scholar
  21. 21.
    J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascón, “Graphene Oxide Dispersions in Organic Solvents,” Langmuir 24(19), 10560–10564 (2008).CrossRefGoogle Scholar
  22. 22.
    S. Moussa and G. Atkinson, M. SamyEl-Shall, A. Shehata, K. M. AbouZeidb, and M. B. Mohamed, “Laser Assisted Photocatalytic Reduction of Metal Ions by Graphene Oxide,” J. Mater. Chem. 21(26), 9608–9619 (2011).CrossRefGoogle Scholar
  23. 23.
    J. I. Paredes, S. Villar-Rodil, P. Solis-Fernández, A. Martinez-Alonso, and J. M. D. Tascón, “Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide,” Langmuir 25(10), 5957–5968 (2009).CrossRefGoogle Scholar
  24. 24.
    Y. Matsumoto, M. Koinuma, S. Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, and S. Ida, “Simple Photoreduction of Graphene Oxide Nanosheet under Mild Conditions,” ACS Appl. Mater. Interfases 2(12), 3461–3466 (2010).CrossRefGoogle Scholar
  25. 25.
    S. Stankovich, R. D. Piner, X. Chen, N. Wu, S.-B. T. Nguyen, and R. S. Ruoff, “Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(sodium) 4-styrenesulfonate,” J. Mater. Chem. 16(2), 155–158 (2006).CrossRefGoogle Scholar
  26. 26.
    T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, and I. Dékány, “Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides,” Chem. Mater. 18(11), 2740–2749 (2006).CrossRefGoogle Scholar
  27. 27.
    H. K. Jeong, M. H. Jin, K. P. So, S. C. Lim, and Y. H. Lee, “Tailoring the Characteristics of Graphite Oxides by Different Oxidation Times,” J. Phys. D: Appl. Phys. 42(6), 065418(6) (2009).CrossRefGoogle Scholar
  28. 28.
    D. W. Lee, V. L. De Los Santos, W. Seo, F. L. Leon, D. A. Bustamante, J. M. Cole, and C. H. W. Barnes, “The Structure of Graphite Oxide: Investigation of Its Surface Chemical Groups,” J. Phys. Chem. B 114(17), 5723–5728 (2010).CrossRefGoogle Scholar
  29. 29.
    N. S. Bayliss and E. G. McRae, “Solvent Effects in the Spectra of Acetone, Crotonaldehyde, Nitromethane and Nitrobenzene,” J. Phys. Chem 58(11), 1006–1011 (1954).CrossRefGoogle Scholar
  30. 30.
    J. Calvert and J. Pitts, Jr., Photochemistry (Wiley, New York, 1967; Mir, Moscow, 1968), p. 671.Google Scholar
  31. 31.
    Organic Electronic Spectral Data, Ed. by M. J. Kamlet (Intersci. Publ., New York-London, 1960), Vol. 1.Google Scholar
  32. 32.
    Organic Electronic Spectral Data, Ed. by H. E. Unganade (Intersci. Publ., New York-London, 1960), Vol. 2.Google Scholar
  33. 33.
    Organic Electronic Spectral Data, Ed. by O. H. Wheler and L. A. Kaplan (Intersci. Publ., New York-London, 1966), Vol. 3.Google Scholar
  34. 34.
    D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The Chemistry of Graphene Oxide,” Chem. Soc. Rev. 39(10), 228–240 (2010).CrossRefGoogle Scholar
  35. 35.
    G. N. Lewis and M. Calvin, “The Color of Organic Substances,” Chem. Rev. 25(2), 273–328 (1939).CrossRefGoogle Scholar
  36. 36.
    M. J. Dewar, “Colour and Constitution Part III. Polyphenyls, Polyenes, and Phenylpolyenes, and the Signification of Cross-Conjugstion,” J. Chem. Soc., 3544–35550 (1952).Google Scholar
  37. 37.
    I. A. Misurkin and A. A. Ovchinnikov, “The Electronic Structures and Properties of Polimeric Molecules with Conjugated Bonds,” Russ. Chem. Rev. 46, 1835–1870 (1977), Chem. Rev. Russian, 4, 6, 967.CrossRefGoogle Scholar
  38. 38.
    M. Tsuji, S. Huzinaga, and T. Hasino, “Bond Alternation in Long Polyenes,” Rev. Mod. Phys. 32(2), 425–427 (1960).CrossRefGoogle Scholar
  39. 39.
    J. A. Barltrop and J. D. Coyle, Excited States in Organic Chemistry (Wiley, New York, London, 1975; Mir, Moscow, 1978).Google Scholar
  40. 40.
    D. Bloor, F. H. Preston, and D. J. Ando, “Optical Properties of Fully and Partially Polymerized Bis(p-Toluene Sulphonate) Diacetylene Crystals,” Chem. Phys. Lett. 38(1), 33–36 (1976).CrossRefGoogle Scholar
  41. 41.
    E. Clar, Polycyclic Hydrocarbons (Acad. Press, London-New York, 1964; Khimiya, Moscow, 1971), Vol. 1.Google Scholar
  42. 42.
    R. Pariser, “Theory of the Electronic Spectra and Structure of the Polyacenes and of Altemant Hydrocarbons,” J. Chem. Phys. 24(2), 250–268 (1956).CrossRefGoogle Scholar
  43. 43.
    J. Robertson and E. P. O’Reilly, “Electronic and Atomic Structure of Amorphous Carbon,” Phys. Rev. B 35(6), 2946–2957 (1987).CrossRefGoogle Scholar
  44. 44.
    F. Demichelis, S. Schreiter, and A. Tagliaferro, “Photoluminescence in a-C:H Films,” Phys. Rev. B 51(4), 2143–2147 (1995).CrossRefGoogle Scholar
  45. 45.
    C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Granfunkel, and M. Chhovalla, “Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films,” Adv. Funct.l Mater. 19(6), 2577–2583 (2009).CrossRefGoogle Scholar
  46. 46.
    J. L. Brédas, and G. B. Street, “Electronic Properties of Amorphous Carbon Films,” J. Phys. C: Solid State Phys. 18(21), L651–L655 (1985).CrossRefGoogle Scholar
  47. 47.
    V. G. Plotnikov, V. A. Smirnov, M. V. Alfimov, and Yu.M. Shul’ga, “The Graphite Oxide Photoreduction Mechanism,” High Energy Chem. 45, 411–415 (2011).CrossRefGoogle Scholar
  48. 48.
    V. G. Plotnikov, V. A. Smirnov, and M. V. Alfimov, “Photophysical Processes and the Photodissociation of Chemical Bonds in Polyatomic Molecules” High Energy Chem. 41, 131 (2007).CrossRefGoogle Scholar
  49. 49.
    M. Ya. Melnikov and V. A. Smirnov, Handbook of Photochemistry of Organic Radicals (Begell House, New York-Wallingford (UK), 1996).Google Scholar
  50. 50.
    Y. Liang, J. Frisch, L. Zhi, H. Norouzi-Arasi, X. Feng, J. P. Rabe, N. Koch, and K. Müllen, “Transparent, Highly Conductive Grapheme Electrodes from Acetylene-Assisted Thermolysis of Graphite Oxide Sheets and Nanographene Molecules,” Nanotechnology 20(43), 434007(6) (2009).CrossRefGoogle Scholar
  51. 51.
    C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene,” Anal. Chem. 81(6), 2378–2382 (2009).CrossRefGoogle Scholar
  52. 52.
    A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401(4) (2006).CrossRefGoogle Scholar
  53. 53.
    G. Eda, G. Fanchini, and M. Chhowalla, “Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material,” Nature Nanotechnol. 3(5), 270–274 (2008).CrossRefGoogle Scholar
  54. 54.
    Y. Si and E. T. Samulski, “Synthesis of Water Soluble Graphene,” Nano Lett. 8(6), 1679–1682 (2008).CrossRefGoogle Scholar
  55. 55.
    H.-K. Jeong, Y. P. Lee, M. H. Jin, E. S. Kim, J. J. Bae, and Y. H. Lee, “Thermal Stability of Graphite Oxide,” Chem. Phys. Lett. 470(4–6), 255–258 (2009).CrossRefGoogle Scholar
  56. 56.
    T. Nakajima, A. Mabuchi, and R. Hagiwara, “A New Structure Model of Graphite Oxide,” Carbon 26(3), 357–361 (1988).CrossRefGoogle Scholar
  57. 57.
    M. Mermoux, Y. Chabre, and A. Rousseau, “FTIR and 13C NMR Study of Graphite Oxide,” Carbon 29(3), 469–474 (1991).CrossRefGoogle Scholar
  58. 58.
    T. Nakajima and Y. Matsuo, “Formation Process and Structure of Graphite Oxide,” Carbon 32(3), 469–475 (1994).CrossRefGoogle Scholar
  59. 59.
    C. Hontoria-Lucas, A. J. López-Peinado, J. de D. López-González, M. L. Rojas-Cervantes, and R. M. Martín-Aranda, “Study of Oxygen-Containing Groups in a Series of Graphite Oxide. Physical and Chemical Characterization,” Carbon 33(11), 1585–1592 (1995).CrossRefGoogle Scholar
  60. 60.
    T. Szabó, O. Berkesi, and I. Dékány, “DRIFT Study of Deuterium-Exchanged Graphite Oxide,” Carbon 43(15), 3186–3189 (2005).CrossRefGoogle Scholar
  61. 61.
    G. I. Titelman, V. Gelman, S. Bron, R. L. Khalfin, Y. Cohen, and H. Bianco-Peled, “Characteristics and Microstructure of Aqueous Colloidal Dispersions of Graphite Oxide,” Carbon 43(3), 641–649 (2005).CrossRefGoogle Scholar
  62. 62.
    T. Szabó, E. Tombacz, E. Illes, and I. Dékány, “Enhanced Acidity and pH-Dependent Surface Charge Characterization of Successivety Oxidized Graphite Oxides,” Carbon 44(3), 537–545 (2006).CrossRefGoogle Scholar
  63. 63.
    S. Stankovich, R. D. Piner, S.-B. T. Nguyen, and R. S. Ruoff, “Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets,” Carbon 44(15), 3342–3347 (2006).CrossRefGoogle Scholar
  64. 64.
    M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud’homme, and I. A. Aksay, “Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite,” Chem. Mater. 19(18), 4396–4404 (2007).CrossRefGoogle Scholar
  65. 65.
    D. Wei, J.-F. Truchon, S. Sirois, and D. Salahub, “Solvation of Formic Acid and Proton Transfer in Hydrated Clusters,” J. Chem. Phys. 116(14), 6028–6038 (2002).CrossRefGoogle Scholar
  66. 66.
    E. E. Fileti and R. Rivelino, “Rayleigh Light Scattering of Hydrogen Bonded Clusters Investigated by Means of ab initio Calculations,” J. Phys. B: Atom. Molec. Opt. Phys. 36(2), 399–408 (2003).CrossRefGoogle Scholar
  67. 67.
    F. Weigert, “über die spezifische Wirkung der polarisierten Straahlung,” Ann. Phys. 368(24), 681–725 (1920).CrossRefGoogle Scholar
  68. 68.
    J. D. Coyle, “Photochemistry of Carboxylic Acid Derivatives,” Chem. Rev. 78(2), 97–123 (1978).CrossRefGoogle Scholar
  69. 69.
    P. Filipiak, G. L. Hug, and B. Marciniak, “Photochemistry of Carboxylic Acids Containing the Phenyl and Thioether Groups: Steady-State and Laser Flash Photolysis Studies,” J. Photochem. Photobiol. A Chem. 177(2–3), 295–306 (2006).CrossRefGoogle Scholar
  70. 70.
    J.-L. Li, K. N. Kudin, M. J. McAllister, R. K. Prud’homme, I. A. Aksay, and R. Car, “Oxygen-Driven Unzipping of Graphitic Materials,” Phys. Rev. Lett. 96(17), 176101(4) (2006).CrossRefGoogle Scholar
  71. 71.
    W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, “New Insights into the Structure and Reduction of Graphite Oxide,” Nature Chem. 1(5), 403–408 (2009).CrossRefGoogle Scholar
  72. 72.
    V. G. Plotnikov and A. A. Ovchinnikov, “The Photochemical and Radiation-Chemical Stability of Molecules. Unimolecular Reactions Involving the Abstraction of a Hydrogen Atom,” Russ. Chem. Rev. 47 247–264 (1978).CrossRefGoogle Scholar
  73. 73.
    C.-L. Huang, J.-C. Jiang, S. H. Lin, Y. T. Lee, and C.-K. Ni, “Photodissociation of Ethylbenzene at 248 nm,” J. Chem. Phys. 116(18), 7779–7783 (2002).CrossRefGoogle Scholar
  74. 74.
    Energy of Chemical Bond Breakage. Ionization Potentials and Affinity to Electron. Handbook, Ed. by V. N. Kondrat’ev (Nauka, Moscow, 1974) [in Russian].Google Scholar
  75. 75.
    V. B. Nazarov, V. A. Smirnov, and M. V. Alfimov, “Photolysis for Solid Solutions. High Exited Triplet Molecules of 1,2-Diphenylethane Decay onto Molecular Hydrogen and Stilbene,” Dokl. Akad. Nauk SSSR 227(4), 908–910 (1976).Google Scholar
  76. 76.
    L. Zhu and T. J. Cronin, “Photodissociation of Benzaldehyde in the 280–308 nm Region,” Chem. Phys. Lett. 317(3–5), 227–231 (2000).CrossRefGoogle Scholar
  77. 77.
    L.-L. Chua, S. Wang, P.-J. Chia, L. Chen, L.-H. Zhao, W. Chen, A. T.-S. Wee, and P. K.-H. Ho, “Deoxidation of Graphene Oxide Nanosheets to Extended Graphenites by “Unzipping” Elimination,” J. Chem. Phys. 129(11), 114702(6) (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. A. Smirnov
    • 1
  • N. N. Denisov
    • 1
  • M. V. Alfimov
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Center of PhotochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations