Advertisement

Nanotechnologies in Russia

, Volume 7, Issue 11–12, pp 629–634 | Cite as

Behavior of multiwalled carbon nanotubes functionalized with sulfo groups in aqueous salt solutions

  • O. A. Pyshkina
  • T. V. Panova
  • Zh. A. Boeva
  • A. A. Lezov
  • G. E. Polushina
  • A. V. Lezov
  • V. G. SergeyevEmail author
Article

Abstract

The functionalization of multiwalled carbon nanotubes (MWCNTs) with sulfanilic acid through the diazotization reaction, which yielded the covalent bonding of sulfo groups to the nanotube surfaces, was performed. Stable aqueous nanotube dispersions were obtained. The sizes of functionalized nanotubes in aqueous salt and salt-free solutions and their hydrodynamic characteristics were measured by dynamic light scattering. The data were compared with the data of scanning electron microscopy.

Keywords

Dynamic Light Scattering Multi Wall Carbon Scanning Electron Micro DMFA Scattered Light Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, “Chemistry of Carbon Nanotubes,” Chem. Rev. 106, 1105–1136 (2006).CrossRefGoogle Scholar
  2. 2.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, and R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes,” Science 26, 483–487 (1996).CrossRefGoogle Scholar
  3. 3.
    M. M. Marshall, S. Popa-Nita, and J. G. Shapter, “Measurement of Functionalized Carbon Nanotube Carboxylic Acid Groups Using a Simple Chemical Process,” Carbon 44, 1137–1141 (2006).CrossRefGoogle Scholar
  4. 4.
    C. Zhao, L. Ji, H. Liu, G. Hu, S. Zhang, M. Yang, and Z. Yang, “Functionalized Carbon Nanotubes Containing Isocyanate Groups,” J. Solid State Chem. 177, 4394–4398 (2004).CrossRefGoogle Scholar
  5. 5.
    M. D. Clark, S. Subramanian, and R. Krishnamoorti, “Understanding Surfactant Aided Aqueous Dispersion of Multi-Walled Carbon Nanotubes,” J. Colloid Interface Sci. 354, 144 (2011).CrossRefGoogle Scholar
  6. 6.
    R. J. Chen, Y. Zhang, D. Wang, and H. Dai, “Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization,” J. Am. Chem. Soc. 123, 3838–3839 (2001).CrossRefGoogle Scholar
  7. 7.
    P. Slobodian, A. Lengalova, and P. Saha, “Poly(Methyl Methacrylate)/Multi-Wall Carbon Nanotubes Composites Prepared by Solvent Cast Technique: Composites Electrical Percolation Threshold,” J. Reinf. Plast. Compos. 26(16), 1705–1712 (2007).CrossRefGoogle Scholar
  8. 8.
    B. Smith, K. Wepasnick, K. E. Schrote, A. R. Bertele, W. P. Bal, C. O’Melia, and D.H. Fairbrother, “Colloidal Properties of Aqueous Suspensions of Acid-Treated, Multi-Walled Carbon Nanotubes,” Environ. Sci. Technol. 43(3), 819–825 (2009).CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, B. Wang, X. Meng, G. Sun, and C. Gao, “Influences of Acid-Treated Multiwalled Carbon Nanotubes on Fibroblasts: Proliferation, Adhesion, Migration, and Wound Healing,” Ann. Biomed. Eng. 39(1), 414 (2010).CrossRefGoogle Scholar
  10. 10.
    J. J. Stephenson, J. L. Hudson, S. Azad, and J. M. Tour, “Individualized Single Walled Carbon Nanotubes from Bulk Material Using 96% Sulfuric Acid as Solvent,” Chem. Mater. 18, 374–377 (2006).CrossRefGoogle Scholar
  11. 11.
    Photon Correlation and Light Beating Spectroscopy, Ed. by H. Z. Cummins and E. R. Pike (Plenum Press, New York, 1974; Mir, Moscow, 1978).Google Scholar
  12. 12.
    C. A. Dyke and J. M. Tour, “Solvent-Free Functionalization of Carbon Nanotubes,” J. Am. Chem. Soc 125, 1156–1157 (2003).CrossRefGoogle Scholar
  13. 13.
    W.-J. Kim, M. L. Usrey, and M. S. Strano, “Selective Functionalization and Free Solution Electrophoresis of Single-Walled Carbon Nanotubes: Separate Enrichment of Metallic and Semiconducting SWNT,” Chem. Mater 19, 1571–1576 (2007).CrossRefGoogle Scholar
  14. 14.
    J. Yu, N. Grossiord, C. E. Koning, and J. Loos, “Controlling the Dispersion of Multi-Wall Carbon Nanotubes in Aqueous Surfactant Solution,” Carbon 45, 618 (2007).CrossRefGoogle Scholar
  15. 15.
    D. Baskaran, J. W. Mays, and M. S. Bratcher, “Noncovalent and Nonspecific Molecular Interactions of Polymers with Multiwalled Carbon Nanotubes. Chem. Mater. 17, 3389–3397 (2005).CrossRefGoogle Scholar
  16. 16.
    A. Smith, Applied Infrared Spectroscopy (Wiley, New York, 1979; Mir, Moscow, 1982).Google Scholar
  17. 17.
    V. N. Tsvetkov, Rigid-Chain Polymers (Nauka, Leningrad, 1986; Plenum, New York, 1989).Google Scholar
  18. 18.
    H. S. Lee, C. H. Yun, H. M. Kim, and C. Lee, “Persistence Length of Multiwalled Carbon Nanotubes with Static Bending,” J. Phys. Chem. 111, 18882–18887.Google Scholar
  19. 19.
    T. Norisuye, M. Motowoka, and H. Fujita, “Wormlike Chains Near the Rod Limit: Translational Friction Coefficient,” Macromolecules 12, 320–323 (1979).CrossRefGoogle Scholar
  20. 20.
    H. Yamakawa and T. Yoshizaki, “Transport Coefficients of Helical Wormlike Chains, 2. Translational Friction Coefficient,” Macromolecules 12, 32–38 (1979).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • O. A. Pyshkina
    • 1
  • T. V. Panova
    • 1
  • Zh. A. Boeva
    • 1
  • A. A. Lezov
    • 2
  • G. E. Polushina
    • 2
  • A. V. Lezov
    • 2
  • V. G. Sergeyev
    • 1
    Email author
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Faculty of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations