Skip to main content
Log in

Comparative study of antibacterial properties of Lysozyme upon its adsorption and covalent binding to nanodiamonds

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Comparative studies of the antibacterial properties of lysozyme upon its immobilization on nanodiamonds using adsorption and covalent binding are conducted in this work. It is shown that the short incubation period of lysozyme with nanodiamonds in a neutral aqueous medium with a component weight ratio of 1: 2 is accompanied by the complete adsorption of enzyme on nanoparticles. It is established that 0.20–0.25 mg of lysozyme could be immobilized by covalent binding on 1 mg of nanodiamonds, the surface of which has been pre-activated with benzoquinone. It is elucidated in experiments with Gram-negative (Photobacterium phosphoreum) and Gram-positive (Bacillus subtilis) bacteria that lysozyme immobilized on nanodiamonds by physical adsorption or covalent binding exhibited functional activity and caused the lysis of bacterial cells. It is shown that the catalytic activity of the immobilized lysozyme in both cases decreased in comparison with the free enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Kurimoto, T. Tanabe, A. Tachibana, and K. Yamauchi, “Keratin Sponge: Immobilization of Lysozyme,” J. Biosci. Bioeng. 96, 307 (2003).

    CAS  Google Scholar 

  2. G. Leegsma-Vogt, M. M. Rhemrev-Boom, R. G. Tiessen, K. Venema, and J. Korf, “The Potential of Biosensor Technology in Clinical Monitoring and Experimental Research,” Biomed. Mater. Eng. 14, 455 (2004).

    Google Scholar 

  3. A. Kruger, Y. Liang, G. Jarre, and J. Stegk, “Surface Functionalisation of Detonation Diamond Suitable for Biological Applications,” J. Mater. Chem. 16, 2322 (2006).

    Article  Google Scholar 

  4. E. Perevedentseva, P. J. Cai, Y. C. Chiu, C. L. Cheng, “Characterizing Protein Activities on the Lysozyme and Nanodiamond Complex Prepared for Bio Applications,” Langmuir 27, 1085 (2011).

    Article  CAS  Google Scholar 

  5. M. M. Elnashar, “Review Article: Immobilized Molecules Using Biomaterials and Nanobiotechnology,” J. Biomater. Nanobiotechnol. 1, 61 (2010).

    Article  CAS  Google Scholar 

  6. J. Kim, B. C. Kim, D. Lopez-Ferrer, K. Petritis, and R. D. Smith, “Nanobiocatalysis for Protein Digestion in Proteomic Analysis,” Proteomics 10, 687 (2010).

    Article  CAS  Google Scholar 

  7. Y. L. Liu and K. W. Sun, “Protein Functionalized Nanodiamond Arrays,” Nanoscale Res. Lett. 5, 1045 (2010).

    Article  CAS  Google Scholar 

  8. J. Li, Y. Zhu, W. Li, X. Zhang, Y. Peng, and Q. Huang, “Nanodiamonds as Intracellular Transporters of Chemotherapeutic Drug,” Biomaterials 31, 8410 (2010).

    Article  CAS  Google Scholar 

  9. F. Meder, T. Daberkow, L. Treccani, M. Wilhelm, M. Schowalter, A. Rosenauer, L. Mädler, and K. Rezwan, “Protein Adsorption on Colloidal Alumina Particles Functionalized with Amino, Carboxyl, Sulfonate and Phosphate Groups,” Acta Biomater. 8, 1221 (2012).

    Article  CAS  Google Scholar 

  10. V. S. Bondar and A. P. Puzyr, “Nanodiamonds for Biological Investigations,” Phys. Solid State 46, 716 (2004).

    Article  CAS  Google Scholar 

  11. A. P. Puzyr, A. V. Baron, K. V. Purtov, E. V. Bortnikov, N. N. Skobelev, O. A. Mogilnaya, and V. S. Bondar, “Nanodiamonds with Novel Properties: A Biological Study,” Diamond Relat. Mater. 16, 2124 (2007).

    Article  CAS  Google Scholar 

  12. A. P. Puzyr, V. S. Bondar, A. A. Bukayemsky, G. E. Selyutin, and V. F. Kargin, “Physical and Chemical Properties of Modified Nanodiamonds,” NATO Sci. Ser. II: Math. Phys. Chem. 192, 261 (2005).

    CAS  Google Scholar 

  13. N. Gibson, O. Shenderova, T. J. M. Luo, S. Moseenkov, V. Bondar, A. Puzyr, K. Purtov, Z. Fitzgerald, and D. W. Brenner, “Colloidal Stability of Modified Nanodiamond Particles,” Diamond Relat. Mater. 18, 620 (2009).

    Article  CAS  Google Scholar 

  14. K. V. Purtov, A. I. Petunin, A. E. Burov, A. P. Puzyr, and V. S. Bondar, “Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances,” Nanoscale Res. Lett. 5, 631 (2010).

    Article  CAS  Google Scholar 

  15. O. A. Mogilnaya, A. P. Puzyr, A. V. Baron, and V. S. Bondar, “Hematological parameters and the state of liver cells of rats after oral administration of aflatoxin B1 alone and together with nanodiamonds,” Nanoscale Res. Lett. 5, 908 (2010).

    Article  CAS  Google Scholar 

  16. V. S. Bondar’, A. P. Puzyr’, K. V. Purtov, O. A. Mogil’naya, G. A. Vydryakova, N. A. Tyul’kova, E. K. Rodicheva, S. E. Medvedeva, A. G. Degermendzhi, and I. I. Gitel’zon, Ross. Nanotekhnol. 3, 38 (2008).

    Google Scholar 

  17. K. V. Purtov, L. P. Burakova, A. P. Puzyr, and V. S. Bondar, “The Interaction of Linear and Ring Forms of DNA Molecules with Nanodiamonds Synthesized by Detonation,” Nanotechnology 19, 1 (2008).

    Article  Google Scholar 

  18. A. A. Vertegel, R. W. Siegel, and J. S. Dordick, “Silica Nanoparticle Size Influences the Structure and Enzymatic Activity of Adsorbed Lysozyme,” Langmuir 20, 6800 (2004).

    Article  CAS  Google Scholar 

  19. M. Minier, M. Salmain, N. Yacoubi, L. Barbes, C. Méthivier, S. Zanna, and C. M. Pradier, “Covalent Immobilization of Lysozyme on Stainless Steel. Interface Spectroscopic Characterization and Measurement of Enzymatic Activity,” Langmuir 21, 5957 (2005).

    Article  CAS  Google Scholar 

  20. J. I. Chao, E. Perevedentseva, P. H. Chung, K. K. Liu, C. Y. Cheng, C. C. Chang, and C. L. Cheng, “Nanometer-Sized Diamond Particle As a Probe for Biolabeling,” Biophys. J. 93, 2199 (2007).

    Article  CAS  Google Scholar 

  21. K. P. Fears and R. A. Latour, “Assessing the Influence of Adsorbed-State Conformation on the Bioactivity of Adsorbed Enzyme Layers,” Langmuir 25, 13926 (2009).

    Article  CAS  Google Scholar 

  22. G. Raffaini and F. Ganazzoli, “Protein Adsorption on a Hydrophobic Surface: A Molecular Dynamics Study of Lysozyme on Graphite,” Langmuir 26, 5679 (2010).

    Article  CAS  Google Scholar 

  23. A. P. Puzyr’ and V. S. Bondar’, RF Patent No. 2252192 (2005).

  24. J. Brandt, L. O. Andersson, and J. Porath, “Covalent Attachment of Proteins to Polysaccharide Carriers by Means of Benzoquinone,” Biochim. Biophys. Acta 386, 196 (1975).

    Article  CAS  Google Scholar 

  25. M.-A. Mateescu, G. Weltrowska, E. Agostinelli, R. Saint-Andre, M. Weltrowski, and B. Mondovi, “Ready to Use p-Benzoquinone-Activated Supports for Biochemical Coupling, with Special Applications for Laccase Immobilization,” Biotechnol. Tech. 3, 415 (1989).

    Article  CAS  Google Scholar 

  26. L. A. Osterman, Chromatography of Proteins and Nucleic Acids(Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  27. R. K. Scopes, Protein Purification: Principles and Practice(Springer, New York, 1982).

    Google Scholar 

  28. A. Sethuraman, G. Vedantham, T. Imoto, T. Przybycien, and G. Belfort, “Protein Unfolding at Interfaces: Slow Dynamics of α-Helix to β-Sheet Transition,” Proteins 56, 669 (2004).

    Article  CAS  Google Scholar 

  29. L. Tao, J. Liu, J. Xu, and T. P. Davis, “Synthesis and Bioactivity of Poly(HPMA)-Lysozyme Conjugates: The Use of Novel Thiazolidine-2-Thione Coupling Chemistry,” Org. Biomol. Chem. 7, 3481 (2009).

    Article  CAS  Google Scholar 

  30. Z. Xu, X. W. Liu, Y. S. Ma, and H. W. Gao, “Interaction of Nano-TiO2 with Lysozyme: Insights into the Enzyme Toxicity of Nanosized Particles,” Environ. Sci. Pollut. Res. Int. 17, 798 (2010).

    Article  CAS  Google Scholar 

  31. K. Kubiak-Ossowska and P. A. Mulheran, “Mechanism of Hen Egg White Lysozyme Adsorption on a Charged Solid Surface,” Langmuir 26, 15954 (2010).

    Article  CAS  Google Scholar 

  32. E. P. Ivanova, J. P. Wright, D. K. Pham, N. Brack, P. Pigram, Y. V. Alekseeva, G. M. Demyashev, and D. V. Nicolau, “A Comparative Study between the Adsorption and Covalent Binding of Human Immunoglobulin and Lysozyme on Surface-Modified Poly(Tert-Butyl Methacrylate),” Biomed. Mater. 1, 24 (2006).

    Article  CAS  Google Scholar 

  33. B. Bharti, J. Meissner, and G. H. Findenegg, “Aggregation of Silica Nanoparticles Directed by Adsorption of Lysozyme,” Langmuir 27, 9823 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Mogil’naya.

Additional information

Original Russian Text © O.A. Mogil’naya, V.S. Bondar, 2012, published in Rossiiskie Nanotekhnologii, 2012, Vol. 7, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mogil’naya, O.A., Bondar, V.S. Comparative study of antibacterial properties of Lysozyme upon its adsorption and covalent binding to nanodiamonds. Nanotechnol Russia 7, 658–665 (2012). https://doi.org/10.1134/S1995078012060080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078012060080

Keywords

Navigation