Skip to main content
Log in

Characterization of physicochemical parameters of nanoparticles formed from modified chitosan

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Chitosan is a biodegradable and biocompatible polysaccharide widely used in different applications in medicine. The polycationic structure of the polymer provides many possibilities for its modification. One of the most interesting applications of chitosan is the development of nanosized delivery systems for biologically active molecules. The functional properties of these delivery systems depend severely on the structure and properties of nanoparticles. Using dynamic light scattering, atomic force microscopy, and to confocal microscopy, we have shown that both hexanoyl chitosan (HC) and succinoyl chitosan (SC) formed nanoparticles of comparable diameters from 120 to 250 nm. Using several methods of analysis helped us identify a minor fraction with a larger size of 600 to 700 nm formed by nanoparticle aggregates. The determined ζ potential was from −20 to −25 mV for SC nanoparticles and from 30 to 35 mV for HC nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. He, Y. Hu, L. Yin, C. Tang, and C. Yin, Biomaterials 31, 3657–3666 (2010).

    Article  CAS  Google Scholar 

  2. M. A. Dobrovolskaia, P. Aggarwal, J. B. Hall, and S. E. McNeil, Mol. Pharm. 5, 487–495 (2008).

    Article  CAS  Google Scholar 

  3. D. E. Owens and N. A. Peppas, Int. J. Pharm. 307, 93–102 (2006).

    Article  CAS  Google Scholar 

  4. H. Taib and C. C. Sorrella, J. Aust. Ceram. Soc. 44, 47–51 (2008).

    CAS  Google Scholar 

  5. M. Kanao, Y. Matsuda, and T. Sato, Macromolecules 36, 2093–2102 (2003).

    Article  CAS  Google Scholar 

  6. S. Lee, P. Rao, M. H. Moon, and C. Giddings, J. Anal. Chem. 68, 1545–1549 (1996).

    Article  CAS  Google Scholar 

  7. M. Kocuna, M. Grandboisb, and L. A. Cucciaa, Colloids Surf., B 82, 470–476 (2011).

    Article  Google Scholar 

  8. S. Heimer and D. Tezak, Adv. Colloid Interface Sci. 98, 1–23 (2002).

    Article  CAS  Google Scholar 

  9. Chitin and Chitosan. Synthesis, Properties and Application, Ed. by K. G. Skryabin, G. A. Vikhoreva, and V. P. Varlamov (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  10. S. A. Agnihotri, N. N. Mallikarjuna, and T. M. Aminabhavi, J. Controlled Release 100, 5–28 (2004).

    Article  CAS  Google Scholar 

  11. A. Des Rieux, V. Fievez, M. Garinot, Y.-J. Schneider, and V. Preat, J. Controlled Release 116, 1–27 (2006).

    Article  Google Scholar 

  12. S. Senel, M. J. Kremer, S. Kas, P. W. Wertz, A. A. Hincal, and C. A. Squier, Biomaterials 21, 2067–2071 (2000).

    Article  CAS  Google Scholar 

  13. M. L. Tana, P. F. M. Choonga, and C. R. Dass, J. Pharm. Pharmacol. 61, 131–142 (2009).

    Article  Google Scholar 

  14. J. H. Park, S. Kwon, M. Lee, H. Chung, J.-H. Kim, Y.-S. Kim, R.-W. Park, I.-S. Kim, S. B. Seo, I. C. Kwon, and S. Y. Jeong, Biomaterials 27, 119–126 (2006).

    Article  CAS  Google Scholar 

  15. H. Katas and H. Oya Alpar, J. Controlled Release 115, 216–225 (2006).

    Article  CAS  Google Scholar 

  16. K. Zang, S. Erselen, V. E. Tikhonov, S. Z. Karaeva, A. V. Slita, V. V. Zarubaev, I. Meli, G. Dyuportai, and V. G. Babak, Ross. Khim. Zh. 51(6), 81–88 (2007).

    Google Scholar 

  17. M. Koping-Hoggard, Y. S. Mel’nikova, K. M. Varum, B. Lindman, and P. Artursson, J. Gene Med 5, 130–141 (2003).

    Article  CAS  Google Scholar 

  18. M. Dash, F. Chiellini, R. M. Ottenbrite, and E. Chiellini, Progr. Polym. Sci. 36, 981–1014 (2011).

    Article  CAS  Google Scholar 

  19. A. Ilyina, V. Orlov, V. Popenko, and V. P. Varlamov, Adv. Chitin Sci. 11, 22–26 (2009).

    Google Scholar 

  20. A. Zubareva, A. V. Ilyina, V. S. Zueva, and V. P. Varlamov, Progr. Chem. Appl. Chitin Its Deriv. 16, 61–70 (2011).

    Google Scholar 

  21. A. V. Il’ina, A. N. Levov, N. M. Mestechkina, N. N. Drozd, V. N. Orlov, V. A. Makarov, V. D. Shcherbukhin, V. P. Varlamov, and K. G. Skryabin, Ross. Nanotekhnol. 4(3–4), 146–154 (2009).

    Google Scholar 

  22. A. V. Il’ina, V. P. Varlamov, Yu. A. Ermakov, V. N. Orlov, and K. G. Skryabin, Dokl. Akad. Nauk 421, 199–201 (2008).

    Google Scholar 

  23. S. W. Paddock, Confocal Microscopy Methods and Protocols, Vol. 122 (Humana, New Jersey, 1999).

    Google Scholar 

  24. R. M. Murphy, Curr. Opin. Biotechnol. 8, 25–30 (1997).

    Article  CAS  Google Scholar 

  25. A. V. Feofanov, Usp. Biol. Khim. 47, 371–410 (2007).

    CAS  Google Scholar 

  26. E. S. K. Tang, M. Huang, and L. Y. Lim, Int. J. Pharm. 265, 103–114 (2003).

    Article  CAS  Google Scholar 

  27. M. W. Anthonsen, K. M. Varum, A. M. Hermansson, O. Smidsred, and D. A. Brant, Carbohydr. Polym. 25, 13–23 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zubareva.

Additional information

Original Russian Text © A.A. Zubareva, D.V. Kurek, S.V. Sizova, E.V. Svirshchevskaya, V.P. Varlamov, 2012, published in Rossiiskie Nanotekhnologii, 2012, Vol. 7, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubareva, A.A., Kurek, D.V., Sizova, S.V. et al. Characterization of physicochemical parameters of nanoparticles formed from modified chitosan. Nanotechnol Russia 7, 428–433 (2012). https://doi.org/10.1134/S1995078012040167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078012040167

Keywords

Navigation