Skip to main content
Log in

Energy spectrum of electrons in multilayer graphenes doped with atoms of alkaline metals

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The electron-energy spectrum of k-layer graphenes (k = 1–4)-both pure and with alkaline metals (M: Na, K, Rb, Cs) incorporated in the interlayer space-has been investigated. The concentration of “guest atoms” x varied. A computation procedure based on the density functional theory generalized to the case of periodic structures (cyclic boundary conditions are imposed on a symmetrically-expanded elementary cell (EC)) is used. The dependences of the chemical potential level, the energy gain caused by the incorporation of M atoms, and the barriers of M transfers between the nearest stable states in the interlayer space of a multilayer graphene on k and x are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ohta, A. Bostwick, J. L. McChesney, Th. Seyller, K. Horn, and E. Rotenberg, “Interlayer Interaction and Electronic Screening in Multilayer Graphene Investigated with Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett. 98, 206802–206806 (2007).

    Article  Google Scholar 

  2. M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, “Trilayer Graphene is a Semimetal with a Gate-Tunable Band Overlap,” Nature Nanotechnol. 4, 383–388 (2009).

    Article  CAS  Google Scholar 

  3. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two Dimensional Atomic Crystals,” Proc. Natl. Acad. Sci. USA 102, 10 451–10 453 (2005).

    Article  CAS  Google Scholar 

  4. A. K. Geim and K. S. Novoselov, “The Rise of Graphene,” Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306, 666–668 (2004).

    Article  CAS  Google Scholar 

  6. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-Based Nanoelectronics,” J. Phys. Chem. B 108, 19912–19916 (2004).

    Article  CAS  Google Scholar 

  7. M. S. Dresselhaus and G. Dresselhau, “Intercalation Compounds of Graphite,” Adv. Phys. 51, 1–186 (2002).

    Article  CAS  Google Scholar 

  8. Yu. A. Dyadin, “Graphite and Its Inclusion Compounds,” Soros. Obrazovat. Zh. 6(10), 43–49 (2000).

    Google Scholar 

  9. W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2001).

    Book  Google Scholar 

  10. W. Kohn, “Electronic Structure of Matter: Wave Functions and Density Functionals,” Usp. Fiz. Nauk 172, 336–348 (2002).

    Article  Google Scholar 

  11. P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136, 864–871 (1964).

    Article  Google Scholar 

  12. W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. Lett. 140, 1133–1138 (1965).

    Google Scholar 

  13. D. M. Ceperley and B. J. Alder, “Ground State of the Electron Gas by a Stochastic Method,” Phys. Rev. Lett. 45, 566–569 (1980).

    Article  CAS  Google Scholar 

  14. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, “The SIESTa Method for ab initio Order-N Materials Simulation,” J. Phys.: Condens. Matter 14, 2745–2779 (2002).

    Article  CAS  Google Scholar 

  15. E. Artacho, E. Anglada, O. Dieguez, J. D. Gale, A. Garcia, J. Junquera, R. M. Martin, P. Ordejon, J. M. Pruneda, D. Sanchez-Portal, and J. M. Soler, “The SIESTa Method; Developments and Applicability,” J. Phys.: Condens. Matter 20, 1–6 (2008).

    Article  Google Scholar 

  16. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  17. R. A. Evarestov, Quantum Chemistry of Solids. The LCAO First Principles of Crystals (Springer-Verlag, Berlin, Heidelberg, 2007).

    Google Scholar 

  18. N. Troullier and J. L. Martins, “Efficient Pseudopotentials for Plane-Wave Calculations,” Phys. Rev. B 43, 1993–2006 (1991).

    Article  CAS  Google Scholar 

  19. L. Kleinman and D. M. Bylander, “Efficacious Form for Model Pseudopotentials,” Phys. Rev. Lett. 48, 1425–1428 (1982).

    Article  CAS  Google Scholar 

  20. H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integrations,” Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Litinskii.

Additional information

Original Russian Text © A.O. Litinskii, Ta Dinh Hien, 2012, published in Rossiiskie Nanotekhnologii, 2012, Vol. 7, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litinskii, A.O., Hien, T.D. Energy spectrum of electrons in multilayer graphenes doped with atoms of alkaline metals. Nanotechnol Russia 7, 140–148 (2012). https://doi.org/10.1134/S1995078012020127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078012020127

Keywords

Navigation