Skip to main content
Log in

Possibilities of improving the characteristics of the scanning near-field optical microscope due to the plasmon-resonance increase of the nonradiative energy transfer rate

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The problem of increasing the quality of the image created by a scanning near-field optical micro-scope with the Förster Resonance Energy Transfer (FRET) module is discussed. The possibility of improving the resolution of the near-field optical microscope due to the FRET effect is analyzed, as is the formation of high-quality images of nanoobjects on the basis of signals of increased intensity obtained by means of plasmon resonance in specially formed metal nanostructures (the plasmon resonance antennas). Research results for the nonradiative transfer of the electron exitation energy between the molecules placed near the planar surface of a conductor or a metal nanocylinder of the nanometer radius, as well as around a spherical nanoparticle, are presented. In the simplest model, the influence of the conducting phase boundary is taken into account by introducing an effective dipole image. If the antenna is a sphertical nanoparticle, then multipole polarization formalism is a more adequate representation of the responce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Obraztsova and I. Yaminskii, “Modern Achievements of Nanooptics,” Nanoindustriya, No. 1, 18–23 (2008).

  2. I. S. Osad’ko, “The Near-Field Microscope as a Tool for Studying Nanoparticles,” Phys. Usp. 53, 77 (2010).

    Article  Google Scholar 

  3. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, New York, 2006).

    Google Scholar 

  4. S. K. Sekatskii and V. S. Letokhov, “Nanometer-Resolution Scanning Optical Microscope with Resonance Excitation of the Fluorescence of the Samples from a Single-Atom Excited Center,” JETP Lett. 63, 319 (1996).

    Article  Google Scholar 

  5. S. K. Sekatskii, G. T. Shubeita, M. Chergui, G. Dietler, B. N. Mironov, D. A. Lapshin, and V. S. Letokhov, “Towards the Fluorescence Resonance Energy Transfer (FRET) Scanning Near-Field Optical Microscopy: Investigation of Nanolocal FRET Processes and FRET Probe Microscope,” J. Exp. Theor. Phys. 90, 769–777 (2000).

    Article  CAS  Google Scholar 

  6. G. T. Shubeita, S. K. Sekatskii, G. Dietler, and V. S. Letokhov, “Local Fluorescent Probes for the Fluorescence Resonance Energy Transfer Scanning Near-Field Optical Microscopy,” Appl. Phys. Lett. 80, 2625–2627 (2002).

    Article  CAS  Google Scholar 

  7. G. Colas des Francs and C. Girard, “Fluorescence Resonance Energy Transfer in the Optical Near Field,” Phys. Rev. A 67, 053805–1-9 (2003).

    Article  Google Scholar 

  8. J. I. Gersten and A. Nitzan, “Spectroscopic Properties of Molecules Interacting with Small Dielectric Particles,” J. Chem. Phys. 75, 1139 (1981).

    Article  CAS  Google Scholar 

  9. J. I. Gersten and A. Nitzan, “Accelerated Energy Transfer between Molecules Near a Solid Particle,” Chem. Phys. Lett. 104, 31–37 (1984).

    Article  CAS  Google Scholar 

  10. V. V. Klimov and V. S. Letokhov, “Resonance Interaction between Two Atomic Dipoles Separated by the Surface of a Dielectric Nanosphere,” Phys. Rev. A 58, 3235–3247 (1998).

    Article  CAS  Google Scholar 

  11. J. Lee and N. A. Kotov, “Theory of Plasmon-Enhanced Förster Energy Transfer in Optically Excited Semiconductor and Metal Nanoparticles,” Phys. Rev. B 76, 125308 (2007).

    Article  Google Scholar 

  12. M. G. Kucherenko, T. M. Chmereva, and D. A. Kislov, “Energy Transfer in Molecular Systems at the Surface of Metal Solids and Nanoparticles,” High Energy Chem. 43, 587–591 (2009).

    Article  CAS  Google Scholar 

  13. C. A. Marocico and J. Knoester, “Intermolecular Resonance Energy Transfer in the Presence of a Dielectric Cylinder,” Phys. Rev. A 79, 053816–1-15 (2009).

    Article  Google Scholar 

  14. H. Y. Chung, P. T. Leung, and D. P. Tsai, “Enhanced Intermolecular Energy Transfer in the Vicinity of a Plasmonic Nanorice,” Plasmonics 5, 363–368 (2010).

    Article  Google Scholar 

  15. M. G. Kucherenko, T. M. Chmereva, and D. A. Kislov, “Increase of Rate of Intermolecular Nonradiative Transfer of Electronic Excitation Energy Near the Flat Boundary of Solid,” Vestn. Orenb. Univ., No. 1, 170–181 (2011).

  16. T. M. Chmereva and M. G. Kucherenko, “Energy Transfer between Adsorbates by Means of Surface Plasmons,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 36–41 (2011).

  17. D. A. Kislov, M. G. Kucherenko, and T. M. Chmereva, “Accelerated Regime of Nonradiative Transfer of Electronic Excitation Energy between Molecules Near Conducting Bodies,” Vestn. Orenb. Univ., No. 4, 128–135 (2011).

  18. T. M. Chmereva and M. G. Kucherenko, “Influence of Conducting Nanocylinder on Resonance Energy Transfer in Donor-Acceptor Pair of Molecules,” Opt. Spectrosc. 110, 767 (2011).

    Article  CAS  Google Scholar 

  19. V. N. Pustovit and T. V. Shahbazyan, “Resonance Energy Transfer Near Metal Nanostructures Mediated by Surface Plasmons,” Phys. Rev. B 83, 085427–1-5 (2011).

    Article  Google Scholar 

  20. V. V. Klimov, M. Ducloy, and V. S. Letokhov, “Spontaneous Emission of an Atom in the Presence of Nanobodies,” Quantum Electron. 31, 569–586 (2001).

    Article  CAS  Google Scholar 

  21. M. G. Kucherenko, D. A. Kislov, and T. M. Chmereva, “Increase of FRET-SNOM Image Quality by Plasmon Resonance in Nanoantennas,” in Proceedings of the International Scientific Conference in Science and Education: Fundamental Principles, Technologies, Innovations (Orenb. Gos. Univ., Orenburg, 2010), pt. 5, pp. 351–356.

  22. M. G. Kucherenko, D. A. Kislov, and T. M. Chmereva, “Plasmon Resonance Enhancement of FRET-SNOM Image,” in Proceedings of the 5th Russian-Japanese Seminar on Molecular and Biophysical Magnetoscience (Orenb. Gos. Univ., Orenburg, 2010), pp. 18–20.

    Google Scholar 

  23. V. N. Konopsky, S. A. Saunin, V. A. Bykov, and E. A. Vinogradov, “Scanning Plasmon Near-Field Microscopy: Signal-Noise Ratio of Different Registration Schemes and Prospects for Single Molecule Detection,” Phys. Chem. 4, 2733–2737 (2002).

    Article  CAS  Google Scholar 

  24. M. G. Kucherenko and T. M. Chmereva, “Exciton Energy Transfer between Adsorbates,” Solid State Phys. 50, 531 (2008).

    Article  CAS  Google Scholar 

  25. T. M. Chmereva and M. G. Kucherenko, “Plasmon Acceleration of FRET Process Near Nanocylinder,” in Proceedings of the International Scientific Conference in Science and Education: Fundamental Principles, Technologies, Innovations (Orenb. Gos. Univ., Orenburg, 2010), pt. 5, pp. 343–348.

    Google Scholar 

  26. T. M. Chmereva and M. G. Kucherenko, “Resonant Energy Transfer in Donor-Acceptor Pair of Molecules Near the Metal Nanocylinder,” in Proceedings of the 5th Russian-Japanese Seminar on Molecular and Biophysical Magnetoscience (Orenb. Gos. Univ., Orenburg, 2010), pp. 21–23.

    Google Scholar 

  27. D. A. Kislov and M. G. Kucherenko, “Enhancement FRET between Dye Molecules in the Presence of Spherical Metal Nanoparticle,” in Proceedings of the 5th Russian-Japanese Seminar on Molecular and Biophysical Magnetoscience (Orenb. Gos. Univ., Orenburg, 2010), pp. 45–47.

    Google Scholar 

  28. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  29. G. E. Dobretsov, Fluorescence Probes in the Study of Cells, Membranes, and Lipoproteins (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  30. D. Jankowski, P. Bojarski, P. Kwiek, and S. Rangelowa-Jankowska, “Donor-acceptor Nonradiative Energy Transfer Mediated by Surface Plasmons on Ultrathin Metallic Films,” Chem. Phys. 373, 238 (2010).

    Article  CAS  Google Scholar 

  31. F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Forster-Type Resonant Energy Transfer Influenced by Metal Nanoparticles,” Nano Lett. 8, 4128 (2008).

    Article  CAS  Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Fizmatlit, Moscow, 2006; Pergamon, Oxford, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Kucherenko.

Additional information

Original Russian Text © M.G. Kucherenko, D.A. Kislov, T.M. Chmereva, 2012, published in Rossiiskie Nanotekhnologii, 2012, Vol. 7, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucherenko, M.G., Kislov, D.A. & Chmereva, T.M. Possibilities of improving the characteristics of the scanning near-field optical microscope due to the plasmon-resonance increase of the nonradiative energy transfer rate. Nanotechnol Russia 7, 196–204 (2012). https://doi.org/10.1134/S1995078012020115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078012020115

Keywords

Navigation