Skip to main content
Log in

Interface structure in polymer nanocomposites containing surface-modified nanoparticles: Atomistic simulation

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The structural properties of an organic-inorganic nanocomposite composed of polyimide and surface-modified silicon oxide nanoparticles were studied by atomistic molecular dynamics. Alkylsilanyl molecules were used as a surface modifier. For the sake of simplicity, the model of the material was built as a layer of a polymer matrix inserted between two solid surfaces. The surface density and chain length of modifier molecules were the main computation parameters. The results of computations show that the properties of the interface between a matrix and inorganic filler can be changed by varying the molecular weight and the surface density of the modifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Ray and M. Okamoto, Prog. Polym. Sci. 28, 1539 (2003).

    Article  CAS  Google Scholar 

  2. D. W. Schaefer and R. S. Justice, Macromolecules 40, 8501 (2007).

    Article  CAS  Google Scholar 

  3. D. R. Paul and L. M. Robeson, Polymer 49, 3187 (2008).

    Article  CAS  Google Scholar 

  4. P. H. C. Camargo, K. G. Satyanarayana, and F. Wypych, Mater. Res. 12, 1 (2009).

    Article  CAS  Google Scholar 

  5. H. Fischer, Mater. Sci. Eng. C 23, 763 (2003).

    Article  Google Scholar 

  6. J. N. Israelashvili and S. J. Kott, J. Chem. Phys. 88, 7162 (1988).

    Article  Google Scholar 

  7. R. G. Horn and J. N. Israelachvili, Macromolecules 21, 2836 (1988).

    Article  CAS  Google Scholar 

  8. C.-S. Ha, H.-D. Park, and C. W. Frank, Chem. Mater. 12, 839 (2000).

    Article  CAS  Google Scholar 

  9. B. V. Derjaguin, N. V. Churaev, and V. M. Muller, Surface Forces (Nauka, Moscow, 1985; Consultants Bureau, New York, 1987).

    Google Scholar 

  10. S. K. Kumar, M. Vacatello, and D. Y. Yoon, J. Chem. Phys. 89, 5206 (1988).

    Article  CAS  Google Scholar 

  11. S. K. Kumar, Macromolecules 23, 2189 (1990).

    Article  CAS  Google Scholar 

  12. D. Barbier, D. Brown, A.-C. Grillet, and S. Neyertz, Macromolecules 37, 4695 (2004).

    Article  CAS  Google Scholar 

  13. K. Ch. Daoulas, V. A. Harmandaris, and V. G. Mavrantzas, Macromolecules 38, 5780 (2005).

    Article  CAS  Google Scholar 

  14. V. A. Harmandaris, K. Ch. Daoulas, and V. G. Mavrantzas, Macromolecules 38, 5796 (2005).

    Article  CAS  Google Scholar 

  15. H. Eslami and F. Muller-Plathe, J. Phys. Chem. B 113, 5568 (2009).

    Article  CAS  Google Scholar 

  16. S. Alexander, J. Phys. (Paris) 38, 983 (1977).

    Article  CAS  Google Scholar 

  17. P. de Gennes, Macromolecules 13, 1069 (1980).

    Article  Google Scholar 

  18. J. B. Avalos, A. D. Mackie, and S. Díez-Orrite, Macromolecules 37, 1143 (2004).

    Article  Google Scholar 

  19. T. Wu, Y. Zhang, X. Wang, and S. Liu, Chem. Mater. 20, 101 (2008).

    Article  CAS  Google Scholar 

  20. D. Dukes, Y. Li, S. Lewis, B. Benicewicz, L. Schadler, and S. K. Kumar, Macromolecules 43, 1564 (2010).

    Article  CAS  Google Scholar 

  21. F. W. Starr, T. B. Schroder, and S. C. Glotzer, Phys. Rev. E 64, 21802 (2001).

    Article  CAS  Google Scholar 

  22. A. Bansal, H. Yang, C. Li, K. Cho, B. C. Benicewicz, S. K. Kumar, and L. S. Schadler, Nature Mater. 4, 693 (2005).

    Article  CAS  Google Scholar 

  23. M. K. Gosh and K. L. Mittal, Polyimides, Fundamentals and Applications (Marcel Dekker, New York, 1996).

    Google Scholar 

  24. E. Bourgeat-Lami and J. J. Lang, J. Colloid Interface Sci. 197, 293 (1998).

    Article  CAS  Google Scholar 

  25. H. Wang, W. Zhong, P. Xu, and Q. Du, Macromol. Mater. Eng. 289, 793 (2004).

    Article  CAS  Google Scholar 

  26. X.-G. Chen, J.-D. Guo, B. Zheng, Y.-Q. Li, S.-Y. Fu, and G.-H. He, Compos. Sci. Technol. 67, 3006 (2007).

    Article  CAS  Google Scholar 

  27. E. Hubner, J. Allgaier, M. Meyer, J. Stellbrink, W. Pyckhout-Hintzen, and D. Richter, Macromolecules 43, 856 (2010).

    Article  Google Scholar 

  28. B. S. Hsiao, J. A. Kreuz, and S. Z. D. Cheng, Macromolecules 29, 135 (1996).

    Article  CAS  Google Scholar 

  29. S. Srinivas, F. E. Caputo, M. Graham, S. Gardner, R. M. Davis, J. E. McGrath, and G. L. Wilkes, Macromolecules 30, 1012 (1997).

    Article  CAS  Google Scholar 

  30. I.-S. Chuang and G. E. Maciel, J. Phys. Chem. B 101, 3052 (1997).

    Article  CAS  Google Scholar 

  31. P. V. Komarov, Yu.-T. Chiu, Sh.-M. Chen, L. V. Zherenkova, and Yu. N. Kovalenko, Nanotechnol. Russ. 5, 333 (2010).

    Article  Google Scholar 

  32. V. A. Basiuk, R. Navarro-Gonzalez, Y. Benilan, and F. Raulin, Spectrochim. Acta A 57, 505 (2001).

    Article  CAS  Google Scholar 

  33. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz,Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995).

    Article  CAS  Google Scholar 

  34. H. Sun, Macromolecules 28, 701 (1995).

    Article  CAS  Google Scholar 

  35. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  Google Scholar 

  36. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1989).

    Google Scholar 

  37. W. Smith and T. R. Forester, J. Mol. Graph. 14(3), 136 (1996).

    Article  CAS  Google Scholar 

  38. www.cse.scitech.ac.uk/ccg/software/DL_POLY/

  39. www.parallel.ru/cluster/skif_msu.html

  40. D. Hofmann, M. Heuchel, Yu. Yampolskii, V. Khotimskii, and V. Shantarovich, Macromolecules 35, 2129 (2002).

    Article  CAS  Google Scholar 

  41. S. Krimm and A. V. Tobolsky, J. Polym. Sci. 7, 57 (1951).

    Article  CAS  Google Scholar 

  42. S. L. Aggarwal and V. V. J. Sweetisg, Chem. Rev. 57, 665 (1957).

    Article  CAS  Google Scholar 

  43. I. A. Ronova, E. M. Rozhkov, A. Yu. Alentiev, and Y. P. Yampolskii, Macromol. Theory Simul. 12, 425 (2003).

    Article  CAS  Google Scholar 

  44. J. Kruse, J. Kanzow, K. Ratzke, F. Faupel, M. Heuchel, J. Frahn, and D. Hofmann, Macromolecules 38, 9638 (2005).

    Article  CAS  Google Scholar 

  45. A. Rudin, K. K. Chee, and J. H. Shaw, J. Polym. Sci. C, No. 30, 415 (1970).

  46. T. C. Clancy, Polymer 45, 7001 (2004).

    Article  CAS  Google Scholar 

  47. G. M. Odegard, T. C. Clancy, and T. S. Gates, Polymer 46, 553 (2005).

    Article  CAS  Google Scholar 

  48. S. Lee and W. L. Mattice, Comput. Theor. Polym. Sci. 9, 57 (1999).

    Article  CAS  Google Scholar 

  49. G. Dlubek, Th. Lupke, J. Stejny, M. A. Alam, and M. Arnold, Macromolecules 33, 990 (2000).

    Article  CAS  Google Scholar 

  50. D. Hofmann, M. Entrialgo-Castano, A. Lerbret, M. Heuchel, and Y. Yampolskii, Macromolecules 36, 8528 (2003).

    Article  CAS  Google Scholar 

  51. K.-S. Chang, C.-C. Tung, K.-S. Wang, and K.-L. Tung, J. Phys. Chem. B 113, 9821 (2009).

    Article  CAS  Google Scholar 

  52. J. Sacristan and C. Mijangos, Macromolecules 43, 7357 (2010).

    Article  CAS  Google Scholar 

  53. B. Frank and A. P. Gast, Macromolecules 29, 6531 (1996).

    Article  CAS  Google Scholar 

  54. A. A. Askadskii and V. I. Kondrashchenko, Computer Material Science of Polymers (Nauchnyi mir, Moscow, 1999), Vol. 1 [in Russian].

    Google Scholar 

  55. V. N. Kuleznev, Mixures and Polymers (Moscow, 1984) [in Russian].

  56. T. D. Fornes, D. L. Hunter, and D. R. Paul, Macromolecules 37, 1793 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Komarov.

Additional information

Original Russian Text © P.V. Komarov, I.V. Mikhailov, Y.-T. Chiu, S.-M. Chen, 2012, published in Rossiiskie Nanotekhnologii, 2012, Vol. 7, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komarov, P.V., Mikhailov, I.V., Chiu, Y.T. et al. Interface structure in polymer nanocomposites containing surface-modified nanoparticles: Atomistic simulation. Nanotechnol Russia 7, 178–187 (2012). https://doi.org/10.1134/S1995078012020103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078012020103

Keywords

Navigation