Skip to main content
Log in

Surface modification of Fe3O4 magnetic nanoparticles with (S)-naproxen

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Fe3O4 magnetic nanoparticles (MNPs) were obtained using the gas condensation method. These MNPs were modified with 3-aminopropylsilane (APS) through covalent bonding. The methods of qualitative and quantitative analysis of the modified MNPs were developed using UV and IR spectroscopy and inductively coupled plasma emission spectrometry (ICP-ES). It was established that the maximum loading level of APS on the surface of Fe3O4 MNPs was 0.91 mmol/g MNP. The study of the activity of the surface amino groups of the nanocomposites was carried out by the example of their modification with (S)-naproxen. The optimum conditions for coupling reaction were found. It was shown that the reaction proceeded most efficiently when using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as coupling agent in the presence of 1-hydroxy-1H-benzotriazole (HOBt). The maximum immobilization level of (S)-naproxen on the Fe3O4 MNP surface was 0.55 mmol/g MNP. Thus, the high reactivity of amino groups of the obtained nano-composites was shown, making it possible to further modify them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of Advanced Hybrid Organic-Inorganic Nanomaterials: From Laboratory to Market,” Chem. Soc. Rev. 40, 696–753 (2011).

    Article  CAS  Google Scholar 

  2. S. Chandra, K. C. Barick, and D. Bahadu, “Oxide and Hybrid Nanostructures for Therapeutic Applications,” Adv. Drug Deliv. Rev. 63, 1267–1281 (2011).

    Article  CAS  Google Scholar 

  3. O. Veiseh, J. W. Gunn, and M. Zhang, “Design and Fabrication of Magnetic Nanoparticles for Targeted Drug Delivery and Imaging,” Adv. Drug Deliv. Rev. 62, 284–304 (2010).

    Article  CAS  Google Scholar 

  4. J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-Engineered Magnetic Nanoparticle Platforms for Cancer Imaging and Therapy,” Acc. Chem. Res. 44, 883–892 (2011).

    Article  CAS  Google Scholar 

  5. A. H. Faraji and P. Wipf, “Nanoparticles in Cellular Drug Delivery,” Bioorg. Med. Chem. 17, 2950–2962 (2009).

    Article  CAS  Google Scholar 

  6. M. A. M. Gijs, F. Lacharme, and U. Lehmann, “Microfluidic Applications of Magnetic Particles for Biological Analysis and Catalysis,” Chem. Rev. 110, 1518–1563 (2010).

    Article  CAS  Google Scholar 

  7. I. Safarik and M. Safarikova, “Magnetic Nano- and Microparticles in Biotechnology,” Chem. Pap. 63, 497–505 (2009).

    Article  CAS  Google Scholar 

  8. J. Gao, H. Gu, and B. Xu, “Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications,” Acc. Chem. Res. 42, 1097–1107 (2009).

    Article  CAS  Google Scholar 

  9. A. Schatz, R. N. Grass, Q. Kainz, W. J. Stark, and O. Reiser, “Cu(II)-Azabis(Oxazoline) Complexes Immobilized on Magnetic Co/C Nanoparticles: Kinetic Resolution of 1,2-Diphenylethane-1,2-Diol under Batch and Continuous-Flow Conditions,” Chem. Mater. 22, 305–310 (2010).

    Article  Google Scholar 

  10. X. Zhang, P. Li, Y. Ji, L. Zhang, and L. Wang, “An Efficient and Recyclable Magnetic-Nanoparticle-Supported Palladium Catalyst for the Suzuki Coupling Reactions of Organoboronic Acids with Alkynyl Bromides,” Synthesis 18, 2975–2983 (2011).

    Google Scholar 

  11. M. Z. Kassaee, H. Masrouri, and F. Movahedi, “Sulfamic Acid-Functionalized Magnetic Fe3O4 Nanoparticles as an Efficient and Reusable Catalyst for One-Pot Synthesis of α-Amino Nitriles in Water,” Appl. Catal. A: Gen. 395, 28–33 (2011).

    Article  CAS  Google Scholar 

  12. D. K. Yi, S. S. Lee, and J. Y. Ying, “Synthesis and Applications of Magnetic Nanocomposite Catalysts,” Chem. Mater. 18, 2459–2461 (2006).

    Article  CAS  Google Scholar 

  13. Y. Zheng, C. Duanmu, and Y. Gao, “A Magnetic Biomimetic Nanocatalyst for Cleaving Phosphoester and Carboxylic Ester Bonds under Mild Conditions,” Org. Lett. 8, 3215–3217 (2006).

    Article  CAS  Google Scholar 

  14. B. Srinivasan and X. Huang, “Functionalization of Magnetic Nanoparticles with Organic Molecules: Loading Level Determination and Evaluation of Linker Length Effect on Immobilization,” Chirality 20, 265–277 (2008).

    Article  CAS  Google Scholar 

  15. I. J. Bruce and T. Sen, “Surface Modification of Magnetic Nanoparticles with Alkoxysilanes and Their Application in Magnetic Bioseparations,” Langmuir 21, 7029–7035 (2005).

    Article  CAS  Google Scholar 

  16. R. de Palma, S. Peeters, M. J. van Bael, H. vah den Rul, K. Bonroy, W. Laureyn, J. Mullens, G. Borghs, and G. Maes, “Silane Ligand Exchange to Make Hydrophobic Superparamagnetic Nanoparticles Water-Dispersible,” Chem. Mater. 19, 1821–1831 (2007).

    Article  Google Scholar 

  17. X. Liu, Z. Ma, J. Xing, and H. Liu, “Preparation and Characterization of Amino-Silane Modified Superparamagnetic Silica Nanospheres,” J. Magn. Magn. Mater. 270, 1–6 (2004).

    Article  CAS  Google Scholar 

  18. T. Tanaka, R. Sakai, R. Kobayashi, K. Hatakeyama, and T. Matsunaga, “Contributions of Phosphate to DNA Adsorption Desorption Behaviors on Aminosilane-Modified Magnetic Nanoparticles,” Langmuir 25, 2956–2961 (2009).

    Article  CAS  Google Scholar 

  19. K. Kang, J. Choi, J. H. Nam, S. C. Lee, K. J. Kim, S.-W. Lee, and J. H. Chang, “Preparation and Characterization of Chemically Functionalized Silica-Coated Magnetic Nanoparticles as a DNa Separator,” J. Phys. Chem. B 113, 536–543 (2009).

    Article  CAS  Google Scholar 

  20. S. Gui, X. Shen, and B. Lin, “Surface Organic Modification of Fe3O4 Nanoparticles by Silane-Coupling Agents,” Rare Metals 25, 426–430 (2006).

    Article  Google Scholar 

  21. T. Osaka, T. Matsunaga, T. Nakanishi, A. Arakaki, D. Niwa, and H. Iida, “Synthesis of Magnetic Nanoparticles and Their Application to Bioassays,” Anal. Bioanal. Chem. 384, 593–600 (2006).

    Article  CAS  Google Scholar 

  22. F. Sulek, Z. Knez, and M. Habulin, “Immobilization of Cholesterol Oxidase to Finely Dispersed Silica-Coated Maghemite Nanoparticles Based Magnetic Fluid,” Appl. Surf. Sci. 256, 4596–4600 (2010).

    Article  CAS  Google Scholar 

  23. J. O. Park, K. Y. Rhee, and S. J. Park, “Silane Treatment of Fe3O4 and Its Effect on the Magnetic and Wear Properties of Fe3O4/Epoxy Nanocomposites,” Appl. Surf. Sci. 256, 6945–6950 (2010).

    Article  CAS  Google Scholar 

  24. H. Cao, J. He, L. Deng, and X. Gao, Fabrication of Cyclodextrin-Functionalized Superparamagnetic Fe3O4/Amino-Silane Core-Shell Nanoparticles via Layer-by-Layer Method,” Appl. Surf. Sci. 255, 7974–7980 (2009).

    Article  CAS  Google Scholar 

  25. H. Iida, T. Nakanishi, and T. Osaka, “Surface Modification of γ-Fe2O3 Nanoparticles with Aminopropylsilyl Groups and Interparticle Linkage with α,ω-Dicarboxylic Acids,” Electrochim. Acta 51, 855–859 (2005).

    Article  CAS  Google Scholar 

  26. N. Kohler, G. E. Fryxell, and M. Zhang, “A Bifunctional Poly(Ethylene Glycol) Silane Immobilized on Metallic Oxide-Based Nanoparticles for Conjugation with Cell Targeting Agents,” J. Am. Chem. Soc. 126, 7206–7211 (2004).

    Article  CAS  Google Scholar 

  27. B. N. Khlebtsov, E. V. Panfilova, V. A. Khanadeev, A. V. Markin, G. S. Terentyuk, V. D. Rumyantseva, A. V. Ivanov, I. P. Shilov, and N. G. Khlebtsov, “Composite Multifunctional Nanoparticles Based on Silica-Coated Gold-Silver Nanocages Functionalized by Yb-Hematoporphyrin,” Nanotechnol. Russ. 6, 496–503 (2011).

    Article  Google Scholar 

  28. S. S. Adams and R. Cobb, “Nonsteroidal Anti-Inflammatory Drugs,” Prog. Med. Chem. 5, 59–138 (1967).

    Article  CAS  Google Scholar 

  29. V. N. Charushin, V. P. Krasnov, G. L. Levit, M. A. Korolyova, M. I. Kodess, O. N. Chupakhin, M. H. Kim, H. S. Lee, Y. J. Park, and K.-C. Kim, “Kinetic Resolution of (±)-2,3-Dihydro-3-Methyl-4H-1,4-Benzoxazines with (S)-Naproxen,” Tetrahedron: Asymmetry 10, 2691–2702 (1999).

    Article  CAS  Google Scholar 

  30. E. N. Chulakov, D. A. Gruzdev, G. L. Levit, L. Sh. Sadretdinova, V. P. Krasnov, and V. N. Charushin, “2-Arylpropionyl Chlorides in Kinetic Resolution of Racemic 3-Methyl-2,3-Dihydro-4H-[1,4]Benzoxazines,” Russ. Chem. Bull. 60, 948–954 (2011).

    Article  CAS  Google Scholar 

  31. C. Wolf and W. H. Pirkle, “Conformational Effects on the Enantioselective Recognition of 4-(3,5-Dinitrobenzoamido)1,2,3,4-Tetrahydrophenanthrene Derivatives by a Naproxen-Derived Chiral Stationary Phase,” J. Chromatogr. A 58, 3597–3603 (2002).

    CAS  Google Scholar 

  32. A. Andreou, N. Al Shaye, H. Brown, and J. Eames, “Resolution of (4RS,5RS)-4,5-Diphenylimidazolidine-2-Thione Using Pentafluorophenyl Active Esters,” Tetrahedron Lett. 51, 6935–6938 (2010).

    Article  CAS  Google Scholar 

  33. V. P. Krasnov, G. L. Levit, V. N. Charushin, A. N. Grisha- kov, M. I. Kodess, V. N. Kalinin, V. A. Ol’shevskaya, and O. N. Chupakhin, “Enantiomers of 3-Amino-1-Methyl-1,2-Dicarba-Closo-Dodecaborane,” Tetrahedron: Asymmetry 13, 1833–1835 (2002).

    Article  CAS  Google Scholar 

  34. G. L. Levit, V. P. Krasnov, A. M. Demin, M. I. Kodess, L. Sh. Sadretdinova, T. V. Matveeva, O. N. Chupakhin, V. N. Charushin, V. A. Ol’shevskaya, and V. N. Kalinin, “Kinetic Resolution of 1-Methyl- and 1-Phenyl-3-Amino-1,2-Dicarba-Closo-Dodecaboranes via Acylation with Chiral Acyl Chlorides,” Mendeleev Commun. 14, 293–295 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Demin.

Additional information

Original Russian Text © A.M. Demin, M.A. Uimin, N.N. Shchegoleva, A.E. Yermakov, V.P. Krasnov, 2012, published in Rossiiskie Nanotekhnologii, 2012, Vol. 7, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demin, A.M., Uimin, M.A., Shchegoleva, N.N. et al. Surface modification of Fe3O4 magnetic nanoparticles with (S)-naproxen. Nanotechnol Russia 7, 132–139 (2012). https://doi.org/10.1134/S199507801202005X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507801202005X

Keywords

Navigation